We give a new and intrinsic proof of the transitivity of the braid group action on the set of full exceptional sequences of coherent sheaves on a weighted projective line. We do not use the corresponding result of Crawley-Boevey for modules over hereditary algebras. As an application we prove that the strongest global dimension of the category of coherent sheaves on a weighted projective line X\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {X}$$\end{document} does not depend on the parameters of X\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {X}$$\end{document}. Finally we prove that the determinant of the matrix obtained by taking the values of nZ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Z}$$\end{document}-linear functions defined on the Grothendieck group K0(X)≃Zn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textrm{K}_0(\mathbb {X}) \simeq \mathbb {Z}^n $$\end{document} of the elements of a full exceptional sequence is an invariant, up to sign.