On the Braid Group Action on Exceptional Sequences for Weighted Projective Lines

被引:0
|
作者
Edson Ribeiro Alvares
Eduardo Nascimento Marcos
Hagen Meltzer
机构
[1] Departamento de Matemática Universidade Federal do Parana,Departamento de Matemática , IME
[2] Universidade de Sao Paulo Brazil,Instytut Matematyki
[3] Uniwersytet Szczeciński,undefined
来源
关键词
Braid group; Exceptional sheaf; Exceptional sequence; Weighted projective line; Tilting sheaf; Tilting complex; Strong global dimension; Grothendieck group; Diophantine equation; Primary 14H05; Secondary 16G20; 16G99;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new and intrinsic proof of the transitivity of the braid group action on the set of full exceptional sequences of coherent sheaves on a weighted projective line. We do not use the corresponding result of Crawley-Boevey for modules over hereditary algebras. As an application we prove that the strongest global dimension of the category of coherent sheaves on a weighted projective line X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {X}$$\end{document} does not depend on the parameters of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {X}$$\end{document}. Finally we prove that the determinant of the matrix obtained by taking the values of nZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-linear functions defined on the Grothendieck group K0(X)≃Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{K}_0(\mathbb {X}) \simeq \mathbb {Z}^n $$\end{document} of the elements of a full exceptional sequence is an invariant, up to sign.
引用
收藏
页码:897 / 909
页数:12
相关论文
共 50 条