Orthogonal Polynomial Wavelets

被引:0
|
作者
Bernd Fischer
Woula Themistoclakis
机构
[1] Medical University of Lübeck,Institute of Mathematics
[2] Università degli Studi della Basilicata,Dipartimento di Matematica
来源
Numerical Algorithms | 2002年 / 30卷
关键词
Weight Function; Unify Approach; Scaling Function; Reconstruction Scheme; Computable Characterization;
D O I
暂无
中图分类号
学科分类号
摘要
Recently Fischer and Prestin presented a unified approach for the construction of polynomial wavelets. In particular, they characterized those parameter sets which lead to orthogonal scaling functions. Here, we extend their results to the wavelets. We work out necessary and sufficient conditions for the wavelets to be orthogonal to each other. Furthermore, we show how these computable characterizations lead to attractive decomposition and reconstruction schemes. The paper concludes with a study of the special case of Bernstein–Szegö weight functions.
引用
收藏
页码:37 / 58
页数:21
相关论文
共 50 条
  • [41] ORTHOGONAL POLYNOMIAL BASES OF THE ORTHOGONAL AND SYMPLECTIC GROUPS
    KLINK, WH
    TONTHAT, T
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1982, 32 (05) : 499 - 503
  • [42] Performance Comparison between Orthogonal, Bi-Orthogonal and Semi-Orthogonal Wavelets
    Saini, Manish Kumar
    Kapoor, Rajiv
    Singh, Ajai Kumar
    Manisha
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 6521 - +
  • [43] Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    Jiang, Bin
    CHAOS SOLITONS & FRACTALS, 2008, 38 (05) : 1449 - 1456
  • [44] Interpolating polynomial wavelets on [−1,1]
    M. R. Capobianco
    W. Themistoclakis
    Advances in Computational Mathematics, 2004, 23 : 353 - 374
  • [45] Document segmentation using polynomial spline wavelets
    Deng, SL
    Latifi, S
    Regentova, E
    PATTERN RECOGNITION, 2001, 34 (12) : 2533 - 2545
  • [46] Interpolating polynomial wavelets on [-1,1]
    Capobianco, MR
    Themistoclakis, W
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (04) : 353 - 374
  • [48] Design of compactly supported trivariate orthogonal wavelets
    Huang, Yongdong
    Cheng, Zhengxing
    Yang, Hanwei
    CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1440 - 1449
  • [49] The effectiveness of polynomial wavelets in text and image segmentation
    Deng, SL
    Latifi, S
    Regentova, E
    DOCUMENT RECOGNITION AND RETRIEVAL VII, 2000, 3967 : 259 - 266
  • [50] Construction of Compactly Supported Bivariate Orthogonal Wavelets
    YANG Jian-wei 1
    Henan Institute of Finance and Economic
    2.Faculty o f Science
    数学季刊, 2003, (03) : 242 - 246