Orthogonal Polynomial Wavelets

被引:0
|
作者
Bernd Fischer
Woula Themistoclakis
机构
[1] Medical University of Lübeck,Institute of Mathematics
[2] Università degli Studi della Basilicata,Dipartimento di Matematica
来源
Numerical Algorithms | 2002年 / 30卷
关键词
Weight Function; Unify Approach; Scaling Function; Reconstruction Scheme; Computable Characterization;
D O I
暂无
中图分类号
学科分类号
摘要
Recently Fischer and Prestin presented a unified approach for the construction of polynomial wavelets. In particular, they characterized those parameter sets which lead to orthogonal scaling functions. Here, we extend their results to the wavelets. We work out necessary and sufficient conditions for the wavelets to be orthogonal to each other. Furthermore, we show how these computable characterizations lead to attractive decomposition and reconstruction schemes. The paper concludes with a study of the special case of Bernstein–Szegö weight functions.
引用
收藏
页码:37 / 58
页数:21
相关论文
共 50 条
  • [11] Polynomial wavelets on the unit circle
    Verma, Ajeet Singh
    Mathur, Pankaj
    NUMERICAL ALGORITHMS, 2017, 76 (04) : 977 - 992
  • [12] Orthonormal polynomial wavelets on the interval
    Dai, DQ
    Lin, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) : 1383 - 1390
  • [13] Orthogonal wavelets with applications in electromagnetics
    Pan, GW
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) : 975 - 983
  • [14] Polynomial wavelets on the unit circle
    Ajeet Singh Verma
    Pankaj Mathur
    Numerical Algorithms, 2017, 76 : 977 - 992
  • [15] Orthogonal wavelets with application in electromagnetics
    Han, MH
    Yuan, NC
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON ANTENNAS AND EM THEORY (ISAE'97), 1997, : 440 - 443
  • [16] Orthogonal wavelets with applications in electromagnetics
    Arizona State Univ, Tempe, United States
    IEEE Trans Magn, 3 /1 (975-983):
  • [17] The computation of orthogonal interval wavelets
    Chen, MQ
    Hwang, CY
    Shih, YP
    JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 1996, 27 (03): : 141 - 152
  • [18] Linear parameterization of orthogonal wavelets
    Lu, WS
    THIRTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 1249 - 1253
  • [19] Scattering theory for orthogonal wavelets
    Jorgensen, PET
    CLIFFORD ALGEBRAS IN ANALYSIS AND RELATED TOPICS, 1996, : 173 - 198
  • [20] COMMENT ON THE CONSTRUCTION OF ORTHOGONAL WAVELETS
    MEYER, Y
    PAIVA, F
    JOURNAL D ANALYSE MATHEMATIQUE, 1993, 60 : 227 - 240