Constructions of negabent functions over finite fields

被引:0
|
作者
Yue Zhou
Longjiang Qu
机构
[1] National University of Defense Technology,College of Science
[2] Otto-von-Guericke University,Faculty of Mathematics
来源
关键词
Negabent functions; Bent functions; Finite fields; Relative difference sets; Projective polynomials; 05B10; 11T06; 06E30; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Bent functions are actively investigated for their various applications in cryptography, coding theory and combinatorial design. As one of their generalizations, negabent functions are also quite useful, and they are originally defined via nega-Hadamard transforms for boolean functions. In this paper, we look at another equivalent definition of them. It allows us to investigate negabent functions f on F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document}, which can be written as a composition of a univariate polynomial over F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} and the trace mapping from F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} to F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2}$\end{document}. In particular, when this polynomial is a monomial, we call f a monomial negabent function. Families of quadratic and cubic monomial negabent functions are constructed, together with several sporadic examples. To obtain more interesting negabent functions in special forms, we also look at certain negabent polynomials. We obtain several families of cubic negabent functions by using the theory of projective polynomials over finite fields.
引用
收藏
页码:165 / 180
页数:15
相关论文
共 50 条
  • [41] PLANAR FUNCTIONS OVER FINITE-FIELDS
    RONYAI, L
    SZONYI, T
    COMBINATORICA, 1989, 9 (03) : 315 - 320
  • [42] On the differential uniformities of functions over finite fields
    Qu LongJiang
    Li Chao
    Dai QingPing
    Kong ZhiYin
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1477 - 1484
  • [43] On the differential uniformities of functions over finite fields
    QU LongJiang
    LI Chao
    DAI QingPing
    KONG ZhiYin
    Science China(Mathematics), 2013, 56 (07) : 1477 - 1484
  • [44] Power trace functions over finite fields
    Fitzgerald, Robert W.
    Kottegoda, Yasanthi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (10)
  • [45] Highly nonlinear functions over finite fields
    Schmidt, Kai-Uwe
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 63
  • [46] Constructions of Polynomial Codes Based on Circular Permutation Over Finite Fields
    Wang, Xiuli
    Hao, Yakun
    Qiao, Dan
    IEEE ACCESS, 2020, 8 : 134219 - 134223
  • [47] Several constructions of optimal LCD codes over small finite fields
    Li, Shitao
    Shi, Minjia
    Liu, Huizhou
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (04): : 779 - 800
  • [48] New Constructions of SD and MR Codes over Small Finite Fields
    Hu, Guangda
    Yekhanin, Sergey
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1591 - 1595
  • [49] Efficient CM-constructions of elliptic curves over finite fields
    Broeker, Reinier
    Stevenhagen, Peter
    MATHEMATICS OF COMPUTATION, 2007, 76 (260) : 2161 - 2179
  • [50] SOME NEW CONSTRUCTIONS OF ISODUAL AND LCD CODES OVER FINITE FIELDS
    Benahmed, Fatma-Zohra
    Guenda, Kenza
    Batoul, Aicha
    Gulliver, Thomas Aaron
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (02) : 281 - 296