Constructions of negabent functions over finite fields

被引:0
|
作者
Yue Zhou
Longjiang Qu
机构
[1] National University of Defense Technology,College of Science
[2] Otto-von-Guericke University,Faculty of Mathematics
来源
关键词
Negabent functions; Bent functions; Finite fields; Relative difference sets; Projective polynomials; 05B10; 11T06; 06E30; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Bent functions are actively investigated for their various applications in cryptography, coding theory and combinatorial design. As one of their generalizations, negabent functions are also quite useful, and they are originally defined via nega-Hadamard transforms for boolean functions. In this paper, we look at another equivalent definition of them. It allows us to investigate negabent functions f on F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document}, which can be written as a composition of a univariate polynomial over F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} and the trace mapping from F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} to F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2}$\end{document}. In particular, when this polynomial is a monomial, we call f a monomial negabent function. Families of quadratic and cubic monomial negabent functions are constructed, together with several sporadic examples. To obtain more interesting negabent functions in special forms, we also look at certain negabent polynomials. We obtain several families of cubic negabent functions by using the theory of projective polynomials over finite fields.
引用
收藏
页码:165 / 180
页数:15
相关论文
共 50 条
  • [31] Constructions of irreducible polynomials over finite fields with even characteristic
    Sharma, P. L.
    Ashima
    Gupta, Shalini
    Harish, Mansi
    Kumar, Sushil
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 734 - 742
  • [32] Constructions of irreducible polynomials over finite fields with even characteristic
    P. L. Sharma
    Shalini Ashima
    Mansi Gupta
    Sushil Harish
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 734 - 742
  • [33] On recursive constructions for 2-designs over finite fields
    Wang, Xiaoran
    Zhou, Junling
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 213
  • [34] Constructions of sequences from algebraic curves over finite fields
    Xing, CP
    SEQUENCES AND THEIR APPLICATIONS, PROCEEDINGS, 2002, : 88 - 100
  • [35] Constructions of Bent-Negabent Functions and Their Relation to the Completed Maiorana-McFarland Class
    Zhang, Fengrong
    Wei, Yongzhuang
    Pasalic, Enes
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) : 1496 - 1506
  • [36] Evaluations of hypergeometric functions over finite fields
    Evans, Ron
    Greene, John
    HIROSHIMA MATHEMATICAL JOURNAL, 2009, 39 (02) : 217 - 235
  • [37] Permutation Binomial Functions over Finite Fields
    Miloserdov A.V.
    Journal of Applied and Industrial Mathematics, 2018, 12 (4) : 694 - 705
  • [38] On Some Special Functions over Finite Fields
    Proskurin N.V.
    Journal of Mathematical Sciences, 2019, 240 (5) : 688 - 691
  • [39] Maximally nonlinear functions over finite fields
    Ryabov, Vladimir G.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (01): : 41 - 53
  • [40] On the differential uniformities of functions over finite fields
    LongJiang Qu
    Chao Li
    QingPing Dai
    ZhiYin Kong
    Science China Mathematics, 2013, 56 : 1477 - 1484