Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains

被引:0
|
作者
Erik Burman
Stefan Frei
Andre Massing
机构
[1] University College London,Department of Mathematics
[2] University of Konstanz,Department of Mathematics and Statistics
[3] Norwegian University of Science and Technology,Department of Mathematical Sciences
[4] Umeå University,Department of Mathematics and Mathematical Statistics
来源
Numerische Mathematik | 2022年 / 150卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld and Olshanskii (ESAIM: M2AN 53(2):585–614, 2019), where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsche’s method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(L^2)$$\end{document}-norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.
引用
收藏
页码:423 / 478
页数:55
相关论文
共 50 条
  • [41] Time-dependent reliability of existing bridges considering non-stationary load process
    Wang C.
    Li Q.-W.
    Li, Quan-Wang (li_quanwang@tsinghua.edu.cn), 1600, Tsinghua University (33): : 18 - 23
  • [42] Time-dependent reliability of aging structures in the presence of non-stationary loads and degradation
    Li, Quanwang
    Wang, Cao
    Ellingwood, Bruce R.
    STRUCTURAL SAFETY, 2015, 52 : 132 - 141
  • [43] ADAPTIVE TIME-STEPPING FOR INCOMPRESSIBLE FLOW PART II: NAVIER-STOKES EQUATIONS
    Kay, David A.
    Gresho, Philip M.
    Griffiths, David F.
    Silvester, David J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 111 - 128
  • [44] THEORY OF NON-STATIONARY, TIME-DEPENDENT EMISSION AND ITS APPLICATION TO ULTRAFAST PROCESSES
    LIN, SH
    FAIN, B
    HAMER, N
    YEH, CY
    CHEMICAL PHYSICS LETTERS, 1989, 162 (1-2) : 73 - 78
  • [45] INTEGRATION OF NAVIER-STOKES EQUATIONS USING DUAL TIME-STEPPING AND A MULTIGRID METHOD
    ARNONE, A
    LIOU, MS
    POVINELLI, LA
    AIAA JOURNAL, 1995, 33 (06) : 985 - 990
  • [46] Filtered time-stepping method for incompressible Navier-Stokes equations with variable density
    Li, Ning
    Wu, Jilian
    Feng, Xinlong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [47] Integrable evolution equations in time-dependent domains
    Fokas, AS
    Pelloni, B
    INVERSE PROBLEMS, 2001, 17 (04) : 919 - 935
  • [48] Stochastic Two-Dimensional Navier-Stokes Equations on Time-Dependent Domains
    Wang, Wei
    Zhai, Jianliang
    Zhang, Tusheng
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2916 - 2939
  • [49] Local Time-Stepping for Explicit Discontinuous Galerkin Schemes
    Gassner, Gregor
    Dumbser, Michael
    Hindenlang, Florian
    Munz, Claus-Dieter
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 171 - 177
  • [50] Spatial simulation of pushbelt CVTs with time-stepping schemes
    Schindler, Thorsten
    Ulbrich, Heinz
    Pfeiffer, Friedrich
    van der Velde, Arie
    Brandsma, Arjen
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1515 - 1530