Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains

被引:0
|
作者
Erik Burman
Stefan Frei
Andre Massing
机构
[1] University College London,Department of Mathematics
[2] University of Konstanz,Department of Mathematics and Statistics
[3] Norwegian University of Science and Technology,Department of Mathematical Sciences
[4] Umeå University,Department of Mathematics and Mathematical Statistics
来源
Numerische Mathematik | 2022年 / 150卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld and Olshanskii (ESAIM: M2AN 53(2):585–614, 2019), where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsche’s method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(L^2)$$\end{document}-norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.
引用
收藏
页码:423 / 478
页数:55
相关论文
共 50 条
  • [21] Discrete maximal regularity of time-stepping schemes for fractional evolution equations
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    NUMERISCHE MATHEMATIK, 2018, 138 (01) : 101 - 131
  • [22] Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology
    Owolabi, Kolade M.
    Patidar, Kailash C.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 240 : 30 - 50
  • [23] Conservative explicit local time-stepping schemes for the shallow water equations
    Hoang, Thi-Thao-Phuong
    Leng, Wei
    Ju, Lili
    Wang, Zhu
    Pieper, Konstantin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 382 : 152 - 176
  • [24] TIME-DEPENDENT DUAL-FREQUENCY COHERENCE IN MULTIVARIATE NON-STATIONARY TIME SERIES
    Gorrostieta, Cristina
    Ombao, Hernando
    Von Sachs, Rainer
    JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (01) : 3 - 22
  • [25] A spectral FC solver for the compressible Navier-Stokes equations in general domains I: Explicit time-stepping
    Albin, Nathan
    Bruno, Oscar P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (16) : 6248 - 6270
  • [26] Uniqueness classes for a non-stationary system of Stokes equations in unbounded domains
    Asadullin, NM
    Mukminov, FK
    SBORNIK MATHEMATICS, 1996, 187 (3-4) : 315 - 333
  • [27] Parabolic equations in time-dependent domains
    Calvo, Juan
    Novaga, Matteo
    Orlandi, Giandomenico
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (02) : 781 - 804
  • [28] Parabolic equations in time-dependent domains
    Juan Calvo
    Matteo Novaga
    Giandomenico Orlandi
    Journal of Evolution Equations, 2017, 17 : 781 - 804
  • [29] Non-stationary solution for the density matrix with time-dependent emission rates
    Enaki, N.
    Galeamov, E.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (11): : 1273 - 1278
  • [30] A stochastic Galerkin method with adaptive time-stepping for the Navier-Stokes equations
    Sousedik, Bedrich
    Price, Randy
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 468