Bakry–Émery Ricci Curvature Bounds for Doubly Warped Products of Weighted Spaces

被引:0
|
作者
Zohreh Fathi
Sajjad Lakzian
机构
[1] Amirkabir University of Technology,Department of Mathematics and Computer Science
[2] Isfahan University of Technology (IUT),Department of Mathematical Sciences
[3] School of Mathematics Institute for Research in Fundamental Sciences (IPM),undefined
来源
关键词
Weighted graphs; Weighted manifolds; Doubly warped product; Bakry–Émery curvature dimension; Ricci curvature; Primary: 53Cxx; 53Bxx; Secondary: 51Fxx; 05Cxx;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a notion of doubly warped product of weighted graphs that is consistent with the doubly warped product in the Riemannian setting. We establish various discrete Bakry–Émery Ricci curvature-dimension bounds for such warped products in terms of the curvature of the constituent graphs. This requires deliberate analysis of the quadratic forms involved, prompting the introduction of some crucial notions such as curvature saturation at a vertex. In the spirit of being thorough and to provide a frame of reference, we also introduce the R1,R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( R_1,R_2\right) $$\end{document}-doubly warped products of smooth measure spaces and establish N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}-Bakry–Émery Ricci curvature (lower) bounds thereof in terms of those of the factors. At the end of these notes, we present examples and demonstrate applications of warped products with some toy models.
引用
收藏
相关论文
共 50 条
  • [21] Comparison Geometry for Integral Radial Bakry-Émery Ricci Tensor Bounds
    Jia-Yong Wu
    Potential Analysis, 2023, 58 : 203 - 223
  • [22] Harmonic forms on manifolds with non-negative Bakry–Émery–Ricci curvature
    Matheus Vieira
    Archiv der Mathematik, 2013, 101 : 581 - 590
  • [23] Boundary effect of m-dimensional Bakry-Émery Ricci curvature
    Qiang Tu
    Guangyue Huang
    Analysis and Mathematical Physics, 2019, 9 : 1319 - 1331
  • [24] Bakry-Émery curvature sharpness and curvature flow in finite weighted graphs: theory
    Cushing, David
    Kamtue, Supanat
    Liu, Shiping
    Muench, Florentin
    Peyerimhoff, Norbert
    Snodgrass, Ben
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [25] Bakry–Émery curvature and model spaces in sub-Riemannian geometry
    Davide Barilari
    Luca Rizzi
    Mathematische Annalen, 2020, 377 : 435 - 482
  • [26] Eigenvalue Estimates for Beltrami-Laplacian Under Bakry-Émery Ricci Curvature Condition
    Ling Wu
    XingYu Song
    Meng Zhu
    Potential Analysis, 2024, 60 : 597 - 614
  • [27] Bakry-Émery-Ricci curvature: an alternative network geometry measure in the expanding toolbox of graph Ricci curvatures
    Mondal, Madhumita
    Samal, Areejit
    Muench, Florentin
    Jost, Juergen
    JOURNAL OF COMPLEX NETWORKS, 2024, 12 (03)
  • [28] ALMOST RIGIDITY OF WARPED PRODUCTS AND THE STRUCTURE OF SPACES WITH RICCI CURVATURE BOUNDED BELOW
    CHEEGER, J
    COLDING, TH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (03): : 353 - 357
  • [29] f-Minimal Surface and Manifold with Positive m-Bakry–Émery Ricci Curvature
    Haizhong Li
    Yong Wei
    The Journal of Geometric Analysis, 2015, 25 : 421 - 435
  • [30] BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS
    Ambrsio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    ANNALS OF PROBABILITY, 2015, 43 (01): : 339 - 404