Harmonic forms on manifolds with non-negative Bakry–Émery–Ricci curvature

被引:1
|
作者
Matheus Vieira
机构
[1] Universidade Federal do Espírito Santo,Departamento de Matemática
来源
Archiv der Mathematik | 2013年 / 101卷
关键词
53C21; 53C20; Harmonic forms; Non-negative Bakry–Émery–Ricci curvature; Smooth metric measure spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that on a complete smooth metric measure space with non-negative Bakry–Émery–Ricci curvature if the space of weighted L2 harmonic one-forms is non-trivial, then the weighted volume of the manifold is finite and the universal cover of the manifold splits isometrically as the product of the real line with a hypersurface.
引用
收藏
页码:581 / 590
页数:9
相关论文
共 50 条