Finite element analysis of the vibration problem of a plate coupled with a fluid

被引:0
|
作者
R.G. Durán
L. Hervella-Nieto
E. Liberman
R. Rodríguez
J. Solomin
机构
[1] Departamento de Matemática,
[2] Facultad de Ciencias Exactas y Naturales,undefined
[3] Universidad de Buenos Aires,undefined
[4] 1428 - Buenos Aires,undefined
[5] Argentina ,undefined
[6] Departamento de Matemática,undefined
[7] Facultade de Informática,undefined
[8] Universidade da Coruña,undefined
[9] 15071 - A Coruña,undefined
[10] Spain ,undefined
[11] Comisión de Investigaciones Científicas de la Provincia de Buenos Aires and Departamento de Matemática,undefined
[12] Facultad de Ciencias Exactas,undefined
[13] Universidad Nacional de La Plata,undefined
[14] C.C. 172.,undefined
[15] 1900 – La Plata,undefined
[16] Argentina ,undefined
[17] Departamento de Ingeniería Matemática,undefined
[18] Universidad de Concepción,undefined
[19] Casilla 160-C,undefined
[20] Concepción,undefined
[21] Chile ,undefined
[22] Departamento de Matemática,undefined
[23] Facultad de Ciencias Exactas,undefined
[24] Universidad Nacional de La Plata,undefined
[25] C.C. 172.,undefined
[26] 1900 - La Plata,undefined
[27] Argentina ,undefined
来源
Numerische Mathematik | 2000年 / 86卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t>0$\end{document}, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t\to 0$\end{document}. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
引用
收藏
页码:591 / 616
页数:25
相关论文
共 50 条
  • [31] Drill String Finite Element Analysis on Coupled Vibration of Horizontal Well
    Li Jinghui
    Wang Jian
    Tang Guowei
    Wu Shuang
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 860 - 863
  • [32] A lumped mass finite element method for vibration analysis of elastic plate-plate structures
    JunJiang Lai
    JianGuo Huang
    ZhongCi Shi
    Science China Mathematics, 2010, 53 : 1453 - 1474
  • [33] A lumped mass finite element method for vibration analysis of elastic plate-plate structures
    LAI JunJiang1
    2Department of Mathematics
    3Division of Computational Science
    4Institute of Computational Mathematics
    ScienceChina(Mathematics), 2010, 53 (06) : 1453 - 1474
  • [34] A lumped mass finite element method for vibration analysis of elastic plate-plate structures
    Lai JunJiang
    Huang JianGuo
    Shi ZhongCi
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (06) : 1453 - 1474
  • [35] Finite element analysis of fluid conveying pipeline of nonlinear vibration response
    Li, Gongfa
    Xiao, Wentao
    Jiang, Guozhang
    Liu, Jia
    Computer Modelling and New Technologies, 2014, 18 (04): : 37 - 41
  • [36] Finite element formulation and vibration frequency analysis of a fluid filled pipe
    Jia, Yi
    Madeira, Reinaldo E.
    Just-Agosto, Frederick
    Recent Advances in Solids and Structures - 2005, 2005, 493 : 127 - 132
  • [37] Development of Energy Finite Element Analysis in Vibration Analysis of Composite Laminate Plate Structures
    Yang, Yang
    Chen, Xiliang
    Zhang, Wenwu
    MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING II, 2014, 470 : 1020 - 1023
  • [38] Analytic solution to the coupled vibration characteristics of a rectangular plate partially immersed in a finite fluid container
    Chen, Guan-Wei
    Liao, Chan-Yi
    Lin, Yang-Zhong
    Ma, Chien-Ching
    JOURNAL OF SOUND AND VIBRATION, 2021, 515
  • [39] Vibration Analysis of Plate with Irregular Cracks by Differential Quadrature Finite Element Method
    Xu, Zhongyuan
    Chen, Wei
    SHOCK AND VIBRATION, 2017, 2017
  • [40] Finite Element Modelling and Analysis of Free Vibration of a Square Plate with Side Crack
    Mohammad Sikandar Azam
    Vinayak Ranjan
    Bipin Kumar
    Differential Equations and Dynamical Systems, 2021, 29 : 299 - 311