Finite element analysis of the vibration problem of a plate coupled with a fluid

被引:0
|
作者
R.G. Durán
L. Hervella-Nieto
E. Liberman
R. Rodríguez
J. Solomin
机构
[1] Departamento de Matemática,
[2] Facultad de Ciencias Exactas y Naturales,undefined
[3] Universidad de Buenos Aires,undefined
[4] 1428 - Buenos Aires,undefined
[5] Argentina ,undefined
[6] Departamento de Matemática,undefined
[7] Facultade de Informática,undefined
[8] Universidade da Coruña,undefined
[9] 15071 - A Coruña,undefined
[10] Spain ,undefined
[11] Comisión de Investigaciones Científicas de la Provincia de Buenos Aires and Departamento de Matemática,undefined
[12] Facultad de Ciencias Exactas,undefined
[13] Universidad Nacional de La Plata,undefined
[14] C.C. 172.,undefined
[15] 1900 – La Plata,undefined
[16] Argentina ,undefined
[17] Departamento de Ingeniería Matemática,undefined
[18] Universidad de Concepción,undefined
[19] Casilla 160-C,undefined
[20] Concepción,undefined
[21] Chile ,undefined
[22] Departamento de Matemática,undefined
[23] Facultad de Ciencias Exactas,undefined
[24] Universidad Nacional de La Plata,undefined
[25] C.C. 172.,undefined
[26] 1900 - La Plata,undefined
[27] Argentina ,undefined
来源
Numerische Mathematik | 2000年 / 86卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t>0$\end{document}, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t\to 0$\end{document}. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
引用
收藏
页码:591 / 616
页数:25
相关论文
共 50 条
  • [21] Free Vibration Analysis of a Functionally Graded Plate by Finite Element Method
    Marzavan, Silvia
    Nastasescu, Vasile
    AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (08)
  • [22] Finite element vibration analysis of laminated composite folded plate structures
    Niyogi, AG
    Laha, MK
    Sinha, PK
    SHOCK AND VIBRATION, 1999, 6 (5-6) : 273 - 283
  • [23] A FINITE ELEMENT APPROACH TO PLATE VIBRATION PROBLEMS
    DAWE, DJ
    JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1965, 7 (01): : 28 - &
  • [24] Finite element analysis of coupled phenomena in magnetorheological fluid devices
    Szelag, W
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2004, 23 (03) : 813 - 824
  • [25] VIBRATION OF INFINITE THIN PLATE COUPLED WITH FLUID
    FILIPPI, P
    SAADAT, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1972, 274 (09): : 585 - &
  • [26] Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration
    Zhao, Ruilin
    Yang, Yidu
    Bi, Hai
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 851 - 869
  • [27] Finite element modeling of higher order Shear Deformation Theory on a plate vibration problem
    Chang, Chiang-Nan
    Chen, Thien-Rhei
    Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao, 1991, 12 (04): : 321 - 332
  • [28] Mixed finite element analysis of a thermally nonlinear coupled problem
    Zhu, J
    Loula, AFD
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (01) : 180 - 196
  • [29] Coupled boundary element method and finite element method for hydroelastic analysis of floating plate
    Shirkol, A. I.
    Nasar, T.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2018, 3 (01) : 19 - 37
  • [30] Vibration analysis of marine propulsion shafting by the coupled finite element method
    Huang, Qianwen
    Zhang, Cong
    Jin, Yong
    Yuan, Chengqing
    Yan, Xinping
    JOURNAL OF VIBROENGINEERING, 2015, 17 (07) : 3392 - 3403