Global existence and large time behavior of solutions of a time fractional reaction diffusion system

被引:0
|
作者
Ahmed Alsaedi
Bashir Ahmad
Mokhtar Kirane
Rafika Lassoued
机构
[1] King Abdulaziz University,Nonlinear Analysis and Applied Mathematics (NAAM)
[2] La Rochelle University,Research Group, Department of Mathematics, Faculty of Science
[3] Laboratoire de mathématiques appliquées et de ľanalyse harmonique Avenue de ľenvironnement,LaSIE
关键词
Primary 35B01; Secondary 35B40; 26A33; reaction-diffusion system; fractional calculus; Caputo derivative; local and global existence; large time behavior;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is proved that a time fractional reaction diffusion system with reaction terms of the Brusselator type admits a global solution by using the feedback method of F. Rothe [20]. Furthermore, some results on the large time behavior of the solutions are obtained. We give a positive answer to Problem 6 of the valuable paper of Gal and Warma [6].
引用
收藏
页码:390 / 407
页数:17
相关论文
共 50 条
  • [1] GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS OF A TIME FRACTIONAL REACTION DIFFUSION SYSTEM
    Alsaedi, Ahmed
    Ahmad, Bashir
    Kirane, Mokhtar
    Lassoued, Rafika
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 390 - 407
  • [2] Global existence and asymptotic behavior for a time fractional reaction-diffusion system
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Lassoued, Rafika
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 951 - 958
  • [3] GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS OF A SEMI-LINEAR TIME AND SPACE FRACTIONAL SYSTEM
    Ahmad, B.
    Hnaien, D.
    Kirane, M.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2017, 16 (02) : 148 - 158
  • [4] Blow-Up and Global Existence of Solutions for the Time Fractional Reaction-Diffusion Equation
    Shi, Linfei
    Cheng, Wenguang
    Mao, Jinjin
    Xu, Tianzhou
    MATHEMATICS, 2021, 9 (24)
  • [5] Existence and nonexistence of global solutions in time for a reaction-diffusion system with inhomogeneous terms
    Igarasht, Takefurni
    Umeda, Noriaki
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2008, 51 (01): : 17 - 37
  • [6] Global existence and blow-up of solutions of the Cauchy problem for a time fractional diffusion system
    Zhang, Quanguo
    Sun, Hong-Rui
    Li, Yaning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1357 - 1366
  • [7] THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS
    BILER, P
    HEBISCH, W
    NADZIEJA, T
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) : 1189 - 1209
  • [8] Blow-up and global existence of solutions for a time fractional diffusion equation
    Yaning Li
    Quanguo Zhang
    Fractional Calculus and Applied Analysis, 2018, 21 : 1619 - 1640
  • [9] BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS FOR A TIME FRACTIONAL DIFFUSION EQUATION
    Li, Yaning
    Zhang, Quanguo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (06) : 1619 - 1640
  • [10] GLOBAL EXISTENCE OF SOLUTIONS FOR A REACTION-DIFFUSION SYSTEM
    Aoyagi, Yutaka
    Tsutaya, Kimitoshi
    Yamauchi, Yusuke
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (12) : 1321 - 1339