BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS FOR A TIME FRACTIONAL DIFFUSION EQUATION

被引:10
|
作者
Li, Yaning [1 ]
Zhang, Quanguo [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
关键词
fractional calculus; blow-up; global existence; nonlinear memory; CAUCHY-PROBLEMS; CRITICAL EXPONENT; NONEXISTENCE;
D O I
10.1515/fca-2018-0085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the blow-up and global existence of solutions to the following time fractional nonlinear diffusion equations {(C)(0)D(t)(alpha)u - Delta u = I-0(t)1-gamma (vertical bar u vertical bar(p-1)u), x is an element of R-N, t > 0, u(0,x) = u(0)(x), x is an element of R-N, where 0 < alpha < gamma < 1, p > 1, u(0) is an element of C-0(R-N), I-0(t)theta denotes left Riemann-Liouville fractional integrals of order theta. (C)(0)D(t)(alpha)u = partial derivative/partial derivative t(0)I(t)(1-alpha) (u(t, x) - u(0, x)). Let beta = 1-gamma. We prove that if 1 < p < p* = max{1 + beta/alpha,1 + 2(alpha + beta)/alpha N}, the solutions of (1.1) blows up in a finite time. If N < 2(alpha + beta)/beta, p >= p * or N >= 2(alpha + beta)/beta, p > p*, and parallel to u(0)parallel to(Lqc) (R-N) is sufficiently small, where q(c) = N alpha(p-1)/2(alpha+beta), the solutions of (1.1) exists globally.
引用
收藏
页码:1619 / 1640
页数:22
相关论文
共 50 条
  • [1] Blow-up and global existence of solutions for a time fractional diffusion equation
    Yaning Li
    Quanguo Zhang
    Fractional Calculus and Applied Analysis, 2018, 21 : 1619 - 1640
  • [2] THE BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEMS FOR A TIME FRACTIONAL DIFFUSION EQUATION
    Zhang, Quan-Guo
    Sun, Hong-Rui
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) : 69 - 92
  • [3] Blow-Up and Global Existence of Solutions for the Time Fractional Reaction-Diffusion Equation
    Shi, Linfei
    Cheng, Wenguang
    Mao, Jinjin
    Xu, Tianzhou
    MATHEMATICS, 2021, 9 (24)
  • [4] Global existence and blow-up of solutions of the Cauchy problem for a time fractional diffusion system
    Zhang, Quanguo
    Sun, Hong-Rui
    Li, Yaning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1357 - 1366
  • [5] Global existence and blow-up of solutions of the time-fractional space-involution reaction-diffusion equation
    Tapdigoglu, Ramiz
    Torebek, Berikbol
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (03) : 960 - 969
  • [6] EXISTENCE OF GLOBAL SOLUTIONS AND BLOW-UP OF SOLUTIONS FOR COUPLED SYSTEMS OF FRACTIONAL DIFFUSION EQUATIONS
    Ahmad, Bashir
    Alsaedi, Ahmed
    Berbiche, Mohamed
    Kirane, Mokhtar
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [7] Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation
    Li, Yaning
    Yang, Yuting
    AIMS MATHEMATICS, 2023, 8 (08): : 17827 - 17859
  • [8] Blow-up solutions of a time-fractional diffusion equation with variable exponents
    Manimaran, J.
    Shangerganesh, L.
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (04) : 149 - 157
  • [9] GLOBAL EXISTENCE, LOCAL EXISTENCE AND BLOW-UP OF MILD SOLUTIONS FOR ABSTRACT TIME-SPACE FRACTIONAL DIFFUSION EQUATIONS
    Fu, Yongqiang
    Zhang, Xiaoju
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (02) : 415 - 440
  • [10] Global Existence and Blow-up of Solutions for A Porous Medium Equation
    Gao, Yunzhu
    Meng, Xi
    Gai, Hong
    ADVANCED BUILDING MATERIALS AND STRUCTURAL ENGINEERING, 2012, 461 : 532 - 536