Global existence and asymptotic behavior for a time fractional reaction-diffusion system

被引:15
|
作者
Alsaedi, Ahmed [1 ]
Kirane, Mokhtar [2 ]
Lassoued, Rafika [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Lab Sci Ingn Environnm Poles Sci & Technol, Ave Michel Crepeau, F-17000 La Rochelle 1, France
[3] Labo Math Appl & Analyse Harmon, Ave Environnm, Monastir 5019, Tunisia
关键词
Fractional calculus; Reaction-diffusion equations; Balance law; Global existence; Asymptotic behavior; EQUATIONS;
D O I
10.1016/j.camwa.2016.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of global in time solutions of a time fractional reaction diffusion system with time fractional derivatives. Furthermore, the large time behavior of bounded solutions is investigated. Our method of proof relies on a maximal regularity result for fractional linear reaction diffusion equations that has been derived by Bajlekova (2001). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:951 / 958
页数:8
相关论文
共 50 条
  • [1] Global Existence and Asymptotic Behavior for a Reaction-Diffusion System with Unbounded Coefficients
    Majdoub, Mohamed
    Tatar, Nasser-Eddine
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [2] The global existence and asymptotic stability of solutions for a reaction-diffusion system
    Bendoukha, Samir
    Abdelmalek, Salem
    Kirane, Mokhtar
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 53
  • [3] On Global Existence of the Fractional Reaction-Diffusion System?s Solution
    Batiha, Iqbal M.
    Barrouk, Nabila
    Ouannas, Adel
    Alshanti, Waseem G.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [4] Global existence and large time behavior of solutions of a time fractional reaction diffusion system
    Ahmed Alsaedi
    Bashir Ahmad
    Mokhtar Kirane
    Rafika Lassoued
    Fractional Calculus and Applied Analysis, 2020, 23 : 390 - 407
  • [5] GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS OF A TIME FRACTIONAL REACTION DIFFUSION SYSTEM
    Alsaedi, Ahmed
    Ahmad, Bashir
    Kirane, Mokhtar
    Lassoued, Rafika
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 390 - 407
  • [6] Global existence and asymptotic stability of equilibria to reaction-diffusion systems
    Wang, Rong-Nian
    Tang, Zhong Wei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (23)
  • [7] Global Existence and Asymptotic Behavior for a Reaction–Diffusion System with Unbounded Coefficients
    Mohamed Majdoub
    Nasser-Eddine Tatar
    Mediterranean Journal of Mathematics, 2023, 20
  • [8] GLOBAL EXISTENCE OF SOLUTIONS FOR A REACTION-DIFFUSION SYSTEM
    Aoyagi, Yutaka
    Tsutaya, Kimitoshi
    Yamauchi, Yusuke
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (12) : 1321 - 1339
  • [9] Global existence and finite time blow up for a reaction-diffusion system
    Wang, MX
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (01): : 160 - 167
  • [10] Global existence and finite time blow up for a reaction-diffusion system
    M. Wang
    Zeitschrift für angewandte Mathematik und Physik, 2000, 51 : 160 - 167