Modeling of thermal and non-thermal radio emission from HH80-81 jet

被引:0
|
作者
Sreelekshmi Mohan
S. Vig
S. Mandal
机构
[1] Indian Institute of Space Science and Technology,
关键词
Radiation mechanisms: non-thermal; methods: numerical; stars: formation; stars: jets;
D O I
暂无
中图分类号
学科分类号
摘要
Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^3$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^5$$\end{document} cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document}, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of 0.01∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.01^{\circ }$$\end{document}–0.1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1^{\circ }$$\end{document} and 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}–10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-4}$$\end{document}, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}0.11 within the observed frequency windows.
引用
收藏
相关论文
共 50 条
  • [31] Non-thermal emission produced by the interaction of a jet with a supernova remnant
    Vieyro, F. L.
    Bosch-Ramon, V.
    Torres-Alba, N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (10):
  • [32] MICROWAVE EMISSION FROM CORONAL HEIGHTS: STUDY OF A NON-THERMAL RADIO FLARE
    S. Pohjolainen
    E. Valtaoja
    S. Urpo
    H. Aurass
    Solar Physics, 1997, 173 : 131 - 149
  • [33] Microwave emission from coronal heights: Study of a non-thermal radio flare
    Pohjolainen, S
    Valtaoja, E
    Urpo, S
    Aurass, H
    SOLAR PHYSICS, 1997, 173 (01) : 131 - 149
  • [34] Non-thermal radio emission from O stars: Binary versus single
    Van Loo, S.
    MASSIVE STARS IN INTERACTING BINARIES, 2007, 367 : 187 - +
  • [35] Non-Thermal Radio Emission from OB Stars: An Observer's View
    Benaglia, Paula
    HIGH ENERGY PHENOMENA IN MASSIVE STARS, 2010, 422 : 111 - 121
  • [36] A layered model for non-thermal radio emission from single O stars
    Van Loo, S.
    Runacres, M.C.
    Blomme, R.
    Astronomy and Astrophysics, 1600, 433 (01): : 313 - 322
  • [37] Non-thermal radio astronomy
    Ekers, R. D.
    ASTROPARTICLE PHYSICS, 2014, 53 : 152 - 159
  • [38] A layered model for non-thermal radio emission from single O stars
    Van Loo, S
    Runacres, MC
    Blomme, R
    ASTRONOMY & ASTROPHYSICS, 2005, 433 (01) : 313 - 322
  • [39] The origin of radio haloes and non-thermal emission in clusters of galaxies
    Liang, H
    Dogiel, VA
    Birkinshaw, M
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 337 (02) : 567 - 577
  • [40] PRODUCTION OF THE SUNS NON-THERMAL RADIO EMISSION BY CERENKOV RADIATION
    MARSHALL, L
    ASTROPHYSICAL JOURNAL, 1956, 124 (02): : 469 - 475