Modeling of thermal and non-thermal radio emission from HH80-81 jet

被引:0
|
作者
Sreelekshmi Mohan
S. Vig
S. Mandal
机构
[1] Indian Institute of Space Science and Technology,
关键词
Radiation mechanisms: non-thermal; methods: numerical; stars: formation; stars: jets;
D O I
暂无
中图分类号
学科分类号
摘要
Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^3$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^5$$\end{document} cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document}, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of 0.01∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.01^{\circ }$$\end{document}–0.1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1^{\circ }$$\end{document} and 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}–10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-4}$$\end{document}, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}0.11 within the observed frequency windows.
引用
收藏
相关论文
共 50 条
  • [11] Non-Thermal Radio Emission from Colliding Wind Binaries
    Blomme, Ronny
    HIGH ENERGY PHENOMENA IN MASSIVE STARS, 2010, 422 : 178 - 185
  • [12] A model for non-thermal optical emission from radio pulsars
    Petrova, SA
    YOUNG NEUTRON STARS AND THEIR ENVIRONMENTS, 2004, (218): : 385 - 386
  • [13] Thermal and non-thermal emission from clusters
    Kaastra, JS
    BROAD BAND X-RAY SPECTRA OF COSMIC SOURCES, 2000, 25 (3-4): : 741 - 750
  • [14] Thermal and non-thermal emission from the cocoon of a gamma-ray burst jet
    De Colle, Fabio
    Lu, Wenbin
    Kumar, Pawan
    Ramirez-Ruiz, Enrico
    Smoot, George
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (04) : 4553 - 4564
  • [15] JET INSTABILITIES AND NON-THERMAL EMISSION FROM SS433
    BODO, G
    FERRARI, A
    MASSAGLIA, S
    ASTRONOMY & ASTROPHYSICS, 1984, 133 (02): : 247 - 251
  • [16] Collective non-thermal emission from an extragalactic jet interacting with stars
    Vieyro, Florencia L.
    Torres-Alba, Nuria
    Bosch-Ramon, Valenti
    ASTRONOMY & ASTROPHYSICS, 2017, 604
  • [17] Modeling non-thermal emission from SN 1987A
    Brose, Robert
    Mackey, Jonathan
    Kelly, Sean
    Grin, Nathan
    Grassitelli, Luca
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [18] Non-Thermal Radio Emission from 'Presumably' Single O Stars
    Van Loo, Sven
    HIGH ENERGY PHENOMENA IN MASSIVE STARS, 2010, 422 : 157 - 165
  • [19] IMPROBABILITY OF NON-THERMAL RADIO EMISSION FROM VENUS WATER CLOUDS
    DRAKE, FD
    ASTROPHYSICAL JOURNAL, 1967, 149 (2P1): : 459 - &
  • [20] Tracing star formation with non-thermal radio emission
    Schober, Jennifer
    Schleicher, D. R. G.
    Klessen, R. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (01) : 946 - 958