Modeling of thermal and non-thermal radio emission from HH80-81 jet

被引:0
|
作者
Sreelekshmi Mohan
S. Vig
S. Mandal
机构
[1] Indian Institute of Space Science and Technology,
关键词
Radiation mechanisms: non-thermal; methods: numerical; stars: formation; stars: jets;
D O I
暂无
中图分类号
学科分类号
摘要
Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^3$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^5$$\end{document} cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document}, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of 0.01∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.01^{\circ }$$\end{document}–0.1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1^{\circ }$$\end{document} and 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}–10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-4}$$\end{document}, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}0.11 within the observed frequency windows.
引用
收藏
相关论文
共 50 条
  • [1] Modeling of thermal and non-thermal radio emission from HH80-81 jet
    Mohan, Sreelekshmi
    Vig, S.
    Mandal, S.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2023, 44 (02)
  • [2] Detection of non-thermal emission from the massive protostellar jet HH80-81 at low radio frequencies using GMRT
    Vig, S.
    Veena, V. S.
    Mandal, S.
    Tej, A.
    Ghosh, S. K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (03) : 3808 - 3816
  • [3] EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80
    Lopez-Santiago, J.
    Peri, C. S.
    Bonito, R.
    Miceli, M.
    Albacete-Colombo, J. F.
    Benaglia, P.
    de Castro, E.
    ASTROPHYSICAL JOURNAL LETTERS, 2013, 776 (02)
  • [4] Detection of large proper motions in the HH 80-81 thermal radio jet
    Marti, J
    Rodriguez, LF
    Reipurth, B
    RADIO EMISSION FROM THE STARS AND THE SUN, 1996, 93 : 50 - 52
  • [5] Proper motions of the inner condensations in the HH 80-81 thermal radio jet
    Martí, J
    Rodríguez, LF
    Reipurth, B
    ASTROPHYSICAL JOURNAL, 1998, 502 (01): : 337 - 341
  • [6] LARGE PROPER MOTIONS AND EJECTION OF NEW CONDENSATIONS IN THE HH-80-81 THERMAL RADIO JET
    MARTI, J
    RODRIGUEZ, LF
    REIPURTH, B
    ASTROPHYSICAL JOURNAL, 1995, 449 (01): : 184 - 187
  • [7] Non-thermal radio emission from Otype stars
    Blomme, R
    Van Loo, S
    De Becker, M
    Rauw, G
    Runacres, MC
    Gunawan, DYAS
    Chapman, JM
    ASTRONOMY & ASTROPHYSICS, 2005, 436 (03): : 1033 - 1040
  • [8] The Highly Collimated Radio Jet of HH 80-81: Structure and Nonthermal Emission
    Rodriguez-Kamenetzky, Adriana
    Carrasco-Gonzalez, Carlos
    Araudo, Anabella
    Romero, Gustavo E.
    Torrelles, Jose M.
    Rodriguez, Luis F.
    Anglada, Guillem
    Marti, Josep
    Perucho, Manel
    Valotto, Carlos
    ASTROPHYSICAL JOURNAL, 2017, 851 (01):
  • [9] Radio spectra of protostellar jets: Thermal and non-thermal emission
    Mohan, Sreelekshmi
    Vig, S.
    Mandal, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (03) : 3709 - 3724
  • [10] Non-thermal radio emission from single hot stars
    Van Loo, S
    Runacres, MC
    Blomme, R
    ASTRONOMY & ASTROPHYSICS, 2004, 418 (02): : 717 - 725