Convolution Integral Operators in Variable Bounded Variation Spaces

被引:0
|
作者
Laura Angeloni
Nelson J. Merentes
Maira A. Valera-López
机构
[1] Università degli Studi di Perugia,Dipartimento di Matematica e Informatica
[2] Universidad Central de Venezuela,Escuela de Matemática, Facultad de Ciencias
来源
关键词
Convolution integral operators; bounded variation spaces with variable exponent; convergence in variable variation; modulus of smoothness; Primary 26A45 Secondary 41A35; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
Working in the frame of variable bounded variation spaces in the sense of Wiener, introduced by Castillo, Merentes, and Rafeiro, we prove convergence in variable variation by means of the classical convolution integral operators. In the proposed approach, a crucial step is the convergence of the variable modulus of smoothness for absolutely continuous functions. Several preliminary properties of the variable p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-variation are also presented.
引用
收藏
相关论文
共 50 条