Convolution Integral Operators in Variable Bounded Variation Spaces

被引:0
|
作者
Laura Angeloni
Nelson J. Merentes
Maira A. Valera-López
机构
[1] Università degli Studi di Perugia,Dipartimento di Matematica e Informatica
[2] Universidad Central de Venezuela,Escuela de Matemática, Facultad de Ciencias
来源
关键词
Convolution integral operators; bounded variation spaces with variable exponent; convergence in variable variation; modulus of smoothness; Primary 26A45 Secondary 41A35; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
Working in the frame of variable bounded variation spaces in the sense of Wiener, introduced by Castillo, Merentes, and Rafeiro, we prove convergence in variable variation by means of the classical convolution integral operators. In the proposed approach, a crucial step is the convergence of the variable modulus of smoothness for absolutely continuous functions. Several preliminary properties of the variable p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-variation are also presented.
引用
收藏
相关论文
共 50 条
  • [31] Fractional integral operators in variable exponent Stummel spaces
    Almeida, Alexandre
    Rafeiro, Humberto
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (01)
  • [32] Approximation on variable exponent spaces by linear integral operators
    Li, Bing-Zheng
    He, Bo-Lu
    Zhou, Ding-Xuan
    JOURNAL OF APPROXIMATION THEORY, 2017, 223 : 29 - 51
  • [33] Commutators of integral operators with variable kernels on Hardy spaces
    Pu Zhang
    Kai Zhao
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2005, 115 : 399 - 410
  • [34] Integral operators with rough kernels in variable Lebesgue spaces
    M. Urciuolo
    L. Vallejos
    Acta Mathematica Hungarica, 2020, 162 : 105 - 116
  • [35] Fractional Type Integral Operators on Variable Hardy Spaces
    P. Rocha
    M. Urciuolo
    Acta Mathematica Hungarica, 2014, 143 : 502 - 514
  • [36] Integral operators with rough kernels in variable Lebesgue spaces
    Urciuolo, M.
    Vallejos, L.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 105 - 116
  • [37] Multilinear integral operators on Lp spaces with variable exponent
    Chen, Dazhao
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (12) : 962 - 977
  • [38] Variable exponent bounded variation spaces in the Riesz sense
    Castillo, Rene E.
    Mauricio Guzman, Oscar
    Rafeiro, Humberto
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 : 173 - 182
  • [39] Rate of convergence of nonlinear integral operators for functions of bounded variation
    Harun Karsli
    Vijay Gupta
    Calcolo, 2008, 45 : 87 - 98
  • [40] On the rate of convergence of some integral operators for functions of bounded variation
    Agratini, O
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (02) : 235 - 252