Sojourns of fractional Brownian motion queues: transient asymptotics

被引:0
|
作者
Krzysztof Dȩbicki
Enkelejd Hashorva
Peng Liu
机构
[1] University of Wrocław,Mathematical Institute
[2] University of Lausanne,Department of Actuarial Science
[3] UNIL-Dorigny,School of Mathematics, Statistics and Actuarial Science
[4] University of Essex,undefined
来源
Queueing Systems | 2023年 / 105卷
关键词
Sojourn time; Fractional Brownian motion; Stationary queueing process; Exact asymptotics; Generalized Berman-type constants; Primary 60G15; Secondary 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotics of sojourn time of the stationary queueing process Q(t),t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(t),t\ge 0$$\end{document} fed by a fractional Brownian motion with Hurst parameter H∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document} above a high threshold u. For the Brownian motion case H=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=1/2$$\end{document}, we derive the exact asymptotics of P∫T1T2I(Q(t)>u+h(u))dt>x|Q(0)>u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbb {P}} \left\{ \int _{T_1}^{T_2}{\mathbb {I}}(Q(t)>u+h(u))d t>x \Big |Q(0) >u \right\} \end{aligned}$$\end{document}as u→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\rightarrow \infty $$\end{document}, where T1,T2,x≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,T_2, x\ge 0$$\end{document} and T2-T1>x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2-T_1>x$$\end{document}, whereas for all H∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1)$$\end{document}, we obtain sharp asymptotic approximations of P1v(u)∫[T2(u),T3(u)]I(Q(t)>u+h(u))dt>y|1v(u)∫[0,T1(u)]I(Q(t)>u)dt>x,x,y>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} {\mathbb {P}} \left\{ \frac{1}{v(u)} \int _{[T_2(u),T_3(u)]}{\mathbb {I}}(Q(t)\!>\!u\!+\!h(u))dt\!>\!y \Bigl |\frac{1}{v(u)} \int _{[0,T_1(u)]}{\mathbb {I}}(Q(t)\!>\!u)dt\!>\!x \right\} ,\\{} & {} \quad x,y >0 \end{aligned}$$\end{document}as u→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\rightarrow \infty $$\end{document}, for appropriately chosen Ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_i$$\end{document}’s and v. Two regimes of the ratio between u and h(u), that lead to qualitatively different approximations, are considered.
引用
收藏
页码:139 / 170
页数:31
相关论文
共 50 条
  • [31] Simulation of fractional brownian motion
    Ruemelin, W.
    Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [32] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [33] On the Generalized Fractional Brownian Motion
    Zili M.
    Mathematical Models and Computer Simulations, 2018, 10 (6) : 759 - 769
  • [34] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [35] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [36] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [37] Mixed fractional Brownian motion
    Cheridito, P
    BERNOULLI, 2001, 7 (06) : 913 - 934
  • [38] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [39] INVERSE LOCAL-TIMES, POSITIVE SOJOURNS, AND MAXIMA FOR BROWNIAN-MOTION
    KNIGHT, FB
    ASTERISQUE, 1988, (157-58) : 233 - 247
  • [40] A Note on the Fractional Integrated Fractional Brownian Motion
    Charles El-Nouty
    Acta Applicandae Mathematica, 2003, 78 : 103 - 114