Piecewise fractional Brownian motion

被引:16
|
作者
Perrin, E [1 ]
Harba, R
Iribarren, I
Jennane, R
机构
[1] Univ Lyon 1, CNRS, UCBL CPE, UMR 5012,Magnet Nucl Resonance Lab, F-69622 Villeurbanne, France
[2] Univ Orleans, Lab Elect Signals & Images, F-45067 Orleans, France
[3] Cent Univ Venezuela, Fac Ciencias, Dept Math, Caracas, Venezuela
关键词
fractal; fractional Brownian motion; self-similarity;
D O I
10.1109/TSP.2004.842209
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Starting from fractional Brownian motion (fBm) of unique parameter H, a piecewise fractional Brownian motion (pfBm) of parameters H-o H-i, and gamma is defined. This new process has two spectral regimes: It behaves like an fBm of parameter H-o for low frequencies \omega\ < gamma and like an fBm of parameter H-i for high frequencies \omega\ greater than or equal to gamma. When H-o = H-i, or for limit cases gamma --> 0 and gamma --> infinity, pfBm becomes classical fBm. It is shown that pfBm is a continuous, Gaussian, and nonstationary process having continuous, Gaussian, and stationary increments, namely, piecewise fractional Gaussian noises. The asymptotic self-similarity of pfBm is shown according to the considered regime: At large scale, the process is self-similar with parameter H. and with parameter Hi at low scale.
引用
收藏
页码:1211 / 1215
页数:5
相关论文
共 50 条
  • [1] Analysis of Piecewise Fractional Brownian Motion Signals and Textures
    Khawaled, Samah
    Zachevsky, Ido
    Zeevi, Yehoshua Y.
    2018 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING IN ISRAEL (ICSEE), 2018,
  • [2] Piecewise fractional Brownian motion for modeling sea clutter
    Liu Ning-Bo
    Guan Jian
    Huang Yong
    Wang Guo-Qing
    He You
    ACTA PHYSICA SINICA, 2012, 61 (19)
  • [3] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [4] The fractional mixed fractional Brownian motion
    El-Nouty, C
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (02) : 111 - 120
  • [5] Oscillatory Fractional Brownian Motion
    Bojdecki, T.
    Gorostiza, L. G.
    Talarczyk, A.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 193 - 215
  • [6] On the maximum of a fractional Brownian motion
    Molchan, GM
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (01) : 97 - 102
  • [7] LACUNARY FRACTIONAL BROWNIAN MOTION
    Clausel, Marianne
    ESAIM-PROBABILITY AND STATISTICS, 2012, 16 : 352 - 374
  • [8] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [9] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [10] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215