Existence and non-existence results for a semilinear fractional Neumann problem

被引:0
|
作者
Eleonora Cinti
Francesca Colasuonno
机构
[1] Alma Mater Studiorum Università di Bologna,Dipartimento di Matematica
关键词
A priori estimates; Moser iteration; Nonlocal Neumann problem; 35B45; 35A01; 35B09; 60G22;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a priori L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case 0<s≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s\le 1/2$$\end{document} the analysis started in [7].
引用
收藏
相关论文
共 50 条