In this paper, we study existence and non-existence of weak solutions for semilinear bi-Delta(gamma)-Laplace equation Delta(2)(gamma)u = f (x, u) in Omega, u = partial derivative(v)u = 0 on partial derivative Omega, where Omega is a bounded domain with smooth boundary in R-N (N >= 2), f (x, xi) is a Caratheodory function and Delta(gamma) is the subelliptic operator of the type Delta(gamma) := Sigma(N)(j=1) partial derivative(xj) (gamma(2)(j)partial derivative(xj)), partial derivative(xj) := partial derivative/partial derivative(xj), gamma = gamma(1), gamma(2), ... , gamma(N)), Delta(2)(gamma) := Delta(gamma) (Delta(gamma)).
机构:
Univ Bio Bio, Fac Ciencias, Dept Matemat, Ave Collao 1202,Casilla 5-C, Concepcion, Bio Bio, ChileUniv Bio Bio, Fac Ciencias, Dept Matemat, Ave Collao 1202,Casilla 5-C, Concepcion, Bio Bio, Chile
Castillo, Ricardo
Guzman-Rea, Omar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brasilia, Campus Univ Darcy Ribeiro, Dept Matemat, BR-70910900 Brasilia, DF, BrazilUniv Bio Bio, Fac Ciencias, Dept Matemat, Ave Collao 1202,Casilla 5-C, Concepcion, Bio Bio, Chile
Guzman-Rea, Omar
Zegarra, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Mayor San Marcos, Dept Matemat, Ave Venezuela S-N Cuadra 34,Lima 1, Lima, PeruUniv Bio Bio, Fac Ciencias, Dept Matemat, Ave Collao 1202,Casilla 5-C, Concepcion, Bio Bio, Chile
Zegarra, Maria
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS,
2022,
3
(06):
机构:
Yamagata Univ, Fac Sci, Kojirakawa Machi 1-4-12, Yamagata 9908560, JapanYamagata Univ, Fac Sci, Kojirakawa Machi 1-4-12, Yamagata 9908560, Japan
Nakamura, Makoto
Sato, Yuya
论文数: 0引用数: 0
h-index: 0
机构:
DNP Digital Solut Co Ltd, Shinagawa Ku, Nishigotanda 3-5-20, Tokyo 1410031, JapanYamagata Univ, Fac Sci, Kojirakawa Machi 1-4-12, Yamagata 9908560, Japan