Non-existence results for semilinear Kohn-Laplace equations in unbounded domains

被引:23
|
作者
Lanconelli, E [1 ]
Uguzzoni, F [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
关键词
D O I
10.1080/03605300008821564
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove several non-existence theorems for the boundary value problem (formula presented) where Ωis a connected unbounded open subset of the Heisenberg group ℍn, △ℍn denotes the Kohn Laplacian on ℍn and S10 (Ω) is the Sobolev-Stein space, completion of C∞0(Ω) with respect to the norm (formula presented) ▽ℍn stands for the intrinsic gradient on Hn. We shall denote by Q:= 2n + 2 the homogeneous dimension of ℍn and by Q*:= 2Q/Q-2 the exponent of the Sobolev-type embedding.
引用
收藏
页码:1703 / 1739
页数:37
相关论文
共 50 条