Theoretical and experimental analysis of the source resistance components in In0.7Ga0.3As quantum-well high-electron-mobility transistors

被引:0
|
作者
In-Geun Lee
Dae-Hong Ko
Seung-Won Yun
Jun-Gyu Kim
Hyeon-Bhin Jo
Dae-Hyun Kim
Takuya Tsutsumi
Hiroki Sugiyama
Hideaki Matsuzaki
机构
[1] Yonsei University,Department of Materials Science and Engineering
[2] Kyungpook National University,School of Electronic and Electrical Engineering
[3] NTT Corporation,NTT Device Technology Laboratories
来源
关键词
Source resistance; InGaAs; HEMT; Contact; Transfer length; Sheet resistance;
D O I
暂无
中图分类号
学科分类号
摘要
Herein we describe theoretical and experimental analysis of the source resistance (Rs) components in In0.7Ga0.3As/In0.52Al0.48As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate. First, we analytically modeled Rs using a three-layer formula, separately modeling the regions of the ohmic contact, the gate-to-source access, and the side-recessed regions. The resistances of the ohmic contact and access regions were analyzed in a distributed-network manner with two different transfer lengths, whereas the resistance associated with the side-recess region near the gate edge was modeled by using a lumped element. To verify the accuracy of the proposed Rs model, we fabricated two different types of transmission-line-method (TLM) test patterns as well as long-channel In0.7Ga0.3As/In0.52Al0.48As QW HEMTs, and compared their measured and modeled Rs. The modeled Rs was in excellent agreement with the measured Rs from the recessed TLM patterns and the long-channel HEMTs. Since the widths of the ohmic contact to the heavily doped In0.53Ga0.47As capping layer and the gate-to-source access region were typically much greater than corresponding transfer lengths (LT_cap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{{\text{T}}\_{\text{cap}}}}$$\end{document} and LT_barrier\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{{\text{T}}\_{\text{barrier}}}}$$\end{document}), those distributed networks could be simplified to a lumped-element based one-layer model, revealing that the tunneling resistance (Rbarrier\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{{\text{barrier}}}}$$\end{document}) through the In0.52Al0.48As barrier should be carefully considered to minimize the Rs of InxGa1−xAs QW HEMTs together with S/D contact resistances and LGS.
引用
收藏
页码:516 / 522
页数:6
相关论文
共 50 条
  • [41] Advanced High-K Gate Dielectric for High-Performance Short-Channel In0.7Ga0.3As Quantum Well Field Effect Transistors on Silicon Substrate for Low Power Logic Applications
    Radosavljevic, M.
    Chu-Kung, B.
    Corcoran, S.
    Dewey, G.
    Hudait, M. K.
    Fastenau, J. M.
    Kavalieros, J.
    Liu, W. K.
    Lubyshev, D.
    Metz, M.
    Millard, K.
    Mukherjee, N.
    Rachmady, W.
    Shah, U.
    Chau, Robert
    2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, 2009, : 292 - +
  • [42] LOW-FREQUENCY GATE CURRENT NOISE IN HIGH-ELECTRON-MOBILITY TRANSISTORS - EXPERIMENTAL-ANALYSIS
    BERTUCCIO, G
    DEGERONIMO, G
    LONGONI, A
    PULLIA, A
    IEEE ELECTRON DEVICE LETTERS, 1995, 16 (03) : 103 - 105
  • [43] Analysis of Lags and Current Collapse in Source-Field-Plate AlGaN/GaN High-Electron-Mobility Transistors
    Hanawa, Hideyuki
    Onodera, Hiraku
    Horio, Kazushige
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
  • [44] Theoretical Studies of 2D Electron Gas Distributions and Scattering Characteristics in Double-Channel n-Al0.3Ga0.7N/GaN/i-AlxGa1-xN/GaN High-Electron-Mobility Transistors
    Cai, Jing
    Yao, Ruo-He
    Geng, Kui-Wei
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2024, 221 (10):
  • [45] Lg=150 nm recessed quantum-well In0.7Ga0.3As MOS-HEMTs with Al2O3/In0.52Al0.48As composite insulator
    Kim, D. -H.
    Kim, T. -W.
    Urteaga, M.
    Brar, B.
    ELECTRONICS LETTERS, 2012, 48 (22) : 1430 - 1431
  • [46] High performance In0.7Ga0.3As metal-oxide-semiconductor transistors with mobility >4400 cm2/V s using InP barrier layer
    Zhao, Han
    Chen, Yen-Ting
    Yum, Jung Hwan
    Wang, Yanzhen
    Goel, Niti
    Lee, Jack C.
    APPLIED PHYSICS LETTERS, 2009, 94 (19)
  • [47] Operation Up to 500 °C of Al0.85Ga0.15N/Al0.7Ga0.3N High Electron Mobility Transistors
    Carey, Patrick H.
    Ren, Fan
    Baca, Albert G.
    Klein, Brianna A.
    Allerman, Andrew A.
    Armstrong, Andrew M.
    Douglas, Erica A.
    Kaplar, Robert J.
    Kotula, Paul G.
    Pearton, Stephen J.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01): : 444 - 452
  • [48] Lg=100 nm In0.7Ga0.3As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer
    Koh, D.
    Kwon, H. M.
    Kim, T-W
    Kim, D-H
    Hudnall, Todd W.
    Bielawski, Christopher W.
    Maszara, W.
    Veksler, D.
    Gilmer, D.
    Kirsch, P. D.
    Banerjee, S. K.
    APPLIED PHYSICS LETTERS, 2014, 104 (16)
  • [49] Buffer-Related Degradation Aspects of Single and Double-Heterostructure Quantum Well InAlN/GaN High-Electron-Mobility Transistors
    Kuzmik, Jan
    Vitanov, Stanislav
    Dua, Christian
    Carlin, Jean-Francois
    Ostermaier, Clemens
    Alexewicz, Alexander
    Strasser, Gottfried
    Pogany, Dionyz
    Gornik, Erich
    Grandjean, Nicolas
    Delage, Sylvain
    Palankovski, Vassil
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (05)
  • [50] Source/Drain Engineering for In0.7Ga0.3As N-Channel Metal-Oxide-Semiconductor Field-Effect Transistors. Raised Source/Drain with In situ Doping for Series Resistance Reduction
    Gong, Xiao
    Chin, Hock-Chun
    Koh, Shao-Ming
    Wang, Lanxiang
    Ivana
    Zhu, Zhu
    Wang, Benzhong
    Chia, Ching Kean
    Yeo, Yee-Chia
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (04)