Theoretical and experimental analysis of the source resistance components in In0.7Ga0.3As quantum-well high-electron-mobility transistors

被引:0
|
作者
In-Geun Lee
Dae-Hong Ko
Seung-Won Yun
Jun-Gyu Kim
Hyeon-Bhin Jo
Dae-Hyun Kim
Takuya Tsutsumi
Hiroki Sugiyama
Hideaki Matsuzaki
机构
[1] Yonsei University,Department of Materials Science and Engineering
[2] Kyungpook National University,School of Electronic and Electrical Engineering
[3] NTT Corporation,NTT Device Technology Laboratories
来源
关键词
Source resistance; InGaAs; HEMT; Contact; Transfer length; Sheet resistance;
D O I
暂无
中图分类号
学科分类号
摘要
Herein we describe theoretical and experimental analysis of the source resistance (Rs) components in In0.7Ga0.3As/In0.52Al0.48As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate. First, we analytically modeled Rs using a three-layer formula, separately modeling the regions of the ohmic contact, the gate-to-source access, and the side-recessed regions. The resistances of the ohmic contact and access regions were analyzed in a distributed-network manner with two different transfer lengths, whereas the resistance associated with the side-recess region near the gate edge was modeled by using a lumped element. To verify the accuracy of the proposed Rs model, we fabricated two different types of transmission-line-method (TLM) test patterns as well as long-channel In0.7Ga0.3As/In0.52Al0.48As QW HEMTs, and compared their measured and modeled Rs. The modeled Rs was in excellent agreement with the measured Rs from the recessed TLM patterns and the long-channel HEMTs. Since the widths of the ohmic contact to the heavily doped In0.53Ga0.47As capping layer and the gate-to-source access region were typically much greater than corresponding transfer lengths (LT_cap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{{\text{T}}\_{\text{cap}}}}$$\end{document} and LT_barrier\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{{\text{T}}\_{\text{barrier}}}}$$\end{document}), those distributed networks could be simplified to a lumped-element based one-layer model, revealing that the tunneling resistance (Rbarrier\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{{\text{barrier}}}}$$\end{document}) through the In0.52Al0.48As barrier should be carefully considered to minimize the Rs of InxGa1−xAs QW HEMTs together with S/D contact resistances and LGS.
引用
收藏
页码:516 / 522
页数:6
相关论文
共 50 条
  • [11] PARASITIC SOURCE AND DRAIN RESISTANCE IN HIGH-ELECTRON-MOBILITY TRANSISTORS.
    Lee, S.J.
    Crowell, C.R.
    Solid-State Electronics, 1985, 28 (07): : 659 - 668
  • [12] Analysis of Gate Delay Scaling in In0.7Ga0.3As-Channel High Electron Mobility Transistors
    Fukuda, Shunsuke
    Suemitsu, Tetsuya
    Otsuji, Taiichi
    Kim, Dae-Hyun
    del Alamo, Jesus A.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (04)
  • [13] InAlSb/InAs/AlGaSb Quantum Well Heterostructures for High-Electron-Mobility Transistors
    Brian R. Bennett
    J. Brad Boos
    Mario G. Ancona
    N. A. Papanicolaou
    Graham A. Cooke
    H. Kheyrandish
    Journal of Electronic Materials, 2007, 36 : 99 - 104
  • [14] InAlSb/InAs/AlGaSb quantum well heterostructures for high-electron-mobility transistors
    Bennett, Brian R.
    Boos, J. Brad
    Ancona, Mario G.
    Papanicolaou, N. A.
    Cooke, Graham A.
    Kheyrandish, H.
    JOURNAL OF ELECTRONIC MATERIALS, 2007, 36 (02) : 99 - 104
  • [15] Sub-50 nm Terahertz In0.8Ga0.2As Quantum-Well High-Electron-Mobility Transistors for 6G Applications
    Park, Wan-Soo
    Jo, Hyeon-Bhin
    Kim, Hyo-Jin
    Choi, Su-Min
    Yoo, Ji-Hoon
    Jeong, Hyeon-Seok
    George, Sethu
    Baek, Ji-Min
    Lee, In-Geun
    Kim, Tae-Woo
    Kim, Sang-Kuk
    Yun, Jacob
    Kim, Ted
    Tsutsumi, Takuya
    Sugiyama, Hiroki
    Matsuzaki, Hideaki
    Lee, Jae-Hak
    Kim, Dae-Hyun
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (04) : 2081 - 2089
  • [16] Fabrication of 45 nm high In component metamorphic In0.7Ga0.3As/In0.6Ga0.4As composite-channel high electron-mobility transistors on GaAs substrates
    Kang, Weihua
    Zhang, Xiaodong
    Ji, Xian
    Cai, Yong
    Zhou, Jiahui
    Xu, Wenjun
    Li, Qi
    Xiao, Gongli
    Zhang, Baoshun
    Li, Haiou
    ELECTRONICS LETTERS, 2016, 52 (04) : 318 - U84
  • [17] Performance and carrier transport analysis of In0.7Ga0.3As quantum-well MOSFETs with Al2O3/HfO2 gate stack
    Son, Seung-Woo
    Park, Jung-Ho
    Baek, Ji-Min
    Kim, Jin Su
    Kim, Do-Kywn
    Shin, Seung Heon
    Banerjee, S. K.
    Lee, Jung-Hee
    Kim, Tae-Woo
    Kim, Dae-Hyun
    SOLID-STATE ELECTRONICS, 2016, 123 : 63 - 67
  • [18] THE MONOLITHIC INTEGRATION OF QUANTUM-WELL HIGH-ELECTRON-MOBILITY FIELD-EFFECT TRANSISTORS, AND ASYMMETRIC FABRY-PEROT OPTICAL MODULATORS
    OSULLIVAN, G
    AHERNE, T
    MCCABE, E
    HEGARTY, J
    HORAN, P
    CORBETT, B
    OPTICAL COMPUTING, 1995, 139 : 519 - 522
  • [19] Theoretical analysis of proton irradiation effects on AlGaN/GaN high-electron-mobility transistors
    Lv, Ling
    Ma, Xiaohua
    Xi, He
    Liu, Linyue
    Cao, Yanrong
    Zhang, Jincheng
    Shan, Hengsheng
    Hao, Yue
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (05):
  • [20] Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors
    Brianna A. Klein
    Albert G. Baca
    Stephan M. Lepkowski
    Christopher D. Nordquist
    Joel R. Wendt
    Andrew A. Allerman
    Andrew M. Armstrong
    Erica A. Douglas
    Vincent M. Abate
    Robert J. Kaplar
    Journal of Electronic Materials, 2019, 48 : 5581 - 5585