On the Domains of Bessel Operators

被引:0
|
作者
Jan Dereziński
Vladimir Georgescu
机构
[1] University of Warsaw,Department of Mathematical Methods in Physics, Faculty of Physics
[2] UMR 8088 CNRS,Laboratoire AGM
来源
Annales Henri Poincaré | 2021年 / 22卷
关键词
47E99; 81Q80;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger operator on the halfline with the potential (m2-14)1x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m^2-\frac{1}{4})\frac{1}{x^2}$$\end{document}, often called the Bessel operator. We assume that m is complex. We study the domains of various closed homogeneous realizations of the Bessel operator. In particular, we prove that the domain of its minimal realization for |Re(m)|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathrm{Re}(m)|<1$$\end{document} and of its unique closed realization for Re(m)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Re}(m)>1$$\end{document} coincide with the minimal second-order Sobolev space. On the other hand, if Re(m)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Re}(m)=1$$\end{document} the minimal second-order Sobolev space is a subspace of infinite codimension of the domain of the unique closed Bessel operator. The properties of Bessel operators are compared with the properties of the corresponding bilinear forms.
引用
收藏
页码:3291 / 3309
页数:18
相关论文
共 50 条
  • [1] On the Domains of Bessel Operators
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2021, 22 (10): : 3291 - 3309
  • [2] BESSEL POTENTIAL-OPERATORS FOR CANONICAL LIPSCHITZ-DOMAINS
    SCHNEIDER, R
    MATHEMATISCHE NACHRICHTEN, 1991, 150 : 277 - 299
  • [3] Bessel integral operators
    Nguon, Donara
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (08) : 647 - 662
  • [4] Asymptotics of determinants of Bessel operators
    Basor, EL
    Ehrhardt, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (03) : 491 - 516
  • [5] Schauder estimates for Bessel operators
    Metafune, Giorgio
    Negro, Luigi
    Spina, Chiara
    FORUM MATHEMATICUM, 2024, 36 (05) : 1187 - 1200
  • [6] Bessel orbits of normal operators
    Philipp, Friedrich
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 767 - 785
  • [7] Asymptotics of Determinants of Bessel Operators
    Estelle L. Basor
    Torsten Ehrhardt
    Communications in Mathematical Physics, 2003, 234 : 491 - 516
  • [8] Harmonic analysis operators associated with multidimensional Bessel operators
    Betancor, Jorge J.
    Castro, Alejandro J.
    Curbelo, Jezabel
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (05) : 945 - 974
  • [9] Inclusion relations for Bessel functions for domains bounded by conical domains
    Ramachandran, Chellakutti
    Annamalai, Srinivasan
    Sivasubramanian, Srikandan
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [10] Inclusion relations for Bessel functions for domains bounded by conical domains
    Chellakutti Ramachandran
    Srinivasan Annamalai
    Srikandan Sivasubramanian
    Advances in Difference Equations, 2014