On solutions of a class of three-point fractional boundary value problems

被引:0
|
作者
Zhanbing Bai
Yu Cheng
Sujing Sun
机构
[1] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Boundary value problems; Conformable fractional derivative; Nonlinear alternative of Leray–Schauder; 34B18; 35J05; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
Existence results for the three-point fractional boundary value problem Dαx(t)=f(t,x(t),Dα−1x(t)),0<t<1,x(0)=A,x(η)−x(1)=(η−1)B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& D^{\alpha}x(t)= f \bigl(t, x(t), D^{\alpha-1} x(t) \bigr),\quad 0< t< 1, \\& x(0)=A, \qquad x(\eta)-x(1)=(\eta-1)B, \end{aligned}$$ \end{document} are presented, where A,B∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A, B\in\mathbb{R}$\end{document}, 0<η<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\eta<1$\end{document}, 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha\leq2$\end{document}. Dαx(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}x(t)$\end{document} is the conformable fractional derivative, and f:[0,1]×R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: [0, 1]\times\mathbb{R}^{2}\to\mathbb{R}$\end{document} is continuous. The analysis is based on the nonlinear alternative of Leray–Schauder.
引用
收藏
相关论文
共 50 条
  • [31] Existence and multiplicity of positive solutions for a class of fractional differential equations with three-point boundary value conditions
    Li, Bingxian
    Sun, Shurong
    Zhao, Ping
    Han, Zhenlai
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 19
  • [32] Existence and multiplicity of positive solutions for a class of fractional differential equations with three-point boundary value conditions
    Bingxian Li
    Shurong Sun
    Ping Zhao
    Zhenlai Han
    Advances in Difference Equations, 2015
  • [33] POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS
    Agarwal, Ravi P.
    O'Regan, Donal
    Yan, Baoqiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [34] Global structure of positive solutions for three-point boundary value problems
    Jia-Ping Gu
    Liang-Gen Hu
    Huai-Nian Zhang
    Boundary Value Problems, 2013
  • [35] EXISTENCE OF SOLUTIONS TO THREE-POINT BOUNDARY-VALUE PROBLEMS AT RESONANCE
    Phan Dinh Phung
    Le Xuan Truong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [36] Positive solutions for singular systems of three-point boundary value problems
    Liu, Bingmei
    Liu, Lishan
    Wu, Yonghong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (09) : 1429 - 1438
  • [37] Multiple solutions of singular three-point boundary value problems on [0, ∞)
    Liu, Bingmei
    Liu, Lishan
    Wu, Yonghong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3348 - 3357
  • [38] Existence of solutions of three-point boundary value problems in Banach spaces
    Chen, Haibo
    Li, Peiluan
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) : 780 - 788
  • [39] Positive Solutions for Singular Systems of Three-Point Boundary Value Problems
    Wang, Caihua
    ADVANCES IN COMPUTER SCIENCE AND ENGINEERING, 2012, 141 : 135 - 141
  • [40] TWO POSITIVE SOLUTIONS TO THREE-POINT SINGULAR BOUNDARY VALUE PROBLEMS
    李宇华
    梁占平
    Acta Mathematica Scientia, 2011, 31 (01) : 29 - 38