On solutions of a class of three-point fractional boundary value problems

被引:0
|
作者
Zhanbing Bai
Yu Cheng
Sujing Sun
机构
[1] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Boundary value problems; Conformable fractional derivative; Nonlinear alternative of Leray–Schauder; 34B18; 35J05; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
Existence results for the three-point fractional boundary value problem Dαx(t)=f(t,x(t),Dα−1x(t)),0<t<1,x(0)=A,x(η)−x(1)=(η−1)B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned}& D^{\alpha}x(t)= f \bigl(t, x(t), D^{\alpha-1} x(t) \bigr),\quad 0< t< 1, \\& x(0)=A, \qquad x(\eta)-x(1)=(\eta-1)B, \end{aligned}$$ \end{document} are presented, where A,B∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A, B\in\mathbb{R}$\end{document}, 0<η<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\eta<1$\end{document}, 1<α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha\leq2$\end{document}. Dαx(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha}x(t)$\end{document} is the conformable fractional derivative, and f:[0,1]×R2→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: [0, 1]\times\mathbb{R}^{2}\to\mathbb{R}$\end{document} is continuous. The analysis is based on the nonlinear alternative of Leray–Schauder.
引用
收藏
相关论文
共 50 条
  • [21] EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THREE-POINT BOUNDARY VALUE PROBLEMS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS
    Liu, Yuji
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (01): : 113 - 132
  • [22] POSITIVE SOLUTIONS FOR A THREE-POINT FRACTIONAL BOUNDARY VALUE PROBLEMS FOR P-LAPLACIAN WITH A PARAMETER
    Yang, Yitao
    Zhang, Yuejin
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (3-4): : 269 - 284
  • [23] Three-Point Boundary Value Problems for Conformable Fractional Differential Equations
    Batarfi, H.
    Losada, Jorge
    Nieto, Juan J.
    Shammakh, W.
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [24] Positive Solutions For A Semipositone Three-Point Fractional Boundary Value Problem
    Al-Askar, Farah M.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 361 - 366
  • [25] Solvability of fractional three-point boundary value problems with nonlinear growth
    Bai, Zhanbing
    Zhang, Yinghan
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 1719 - 1725
  • [26] Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions
    Weerawat Sudsutad
    Jessada Tariboon
    Advances in Difference Equations, 2012
  • [27] Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions
    Sudsutad, Weerawat
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [28] Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions
    Sitthiwirattham, Thanin
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [29] Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions
    Thanin Sitthiwirattham
    Jessada Tariboon
    Sotiris K Ntouyas
    Advances in Difference Equations, 2013
  • [30] A three-point Taylor algorithm for three-point boundary value problems
    Lopez, J. L.
    Perez Sinusia, Ester
    Temme, N. M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) : 26 - 44