On denominators of the Kontsevich integral and the universal perturbative invariant of 3-manifolds

被引:0
|
作者
Thang T. Q. Le
机构
[1] Department of Mathematics,
[2] SUNY at Buffalo,undefined
[3] Buffalo,undefined
[4] NY 14214,undefined
[5] USA (e-mail: letu@newton.math.buffalo.edu),undefined
来源
Inventiones mathematicae | 1999年 / 135卷
关键词
Chord Diagram; Perturbative Invariant;
D O I
暂无
中图分类号
学科分类号
摘要
 The integrality of the Kontsevich integral and perturbative invariants is discussed. It is shown that the denominator of the degree n part of the Kontsevich integral of any knot or link is a divisor of (2!3!…n!)4(n+1)!. We prove this by establishing the existence of a Drinfeld's associator in the space of chord diagrams with special denominators. We also show that the denominator of the degree n part of the universal perturbative invariant of homology 3-spheres is not divisible by any prime greater than 2n+1.
引用
收藏
页码:689 / 722
页数:33
相关论文
共 50 条