The integrality of the Kontsevich integral and perturbative invariants is discussed. It is shown that the denominator of the degree n part of the Kontsevich integral of any knot or link is a divisor of (2!3!…n!)4(n+1)!. We prove this by establishing the existence of a Drinfeld's associator in the space of chord diagrams with special denominators. We also show that the denominator of the degree n part of the universal perturbative invariant of homology 3-spheres is not divisible by any prime greater than 2n+1.