Universal covers and 3-manifolds

被引:7
|
作者
Lasheras, FF [1 ]
机构
[1] Univ Sevilla, Dept Geometria & Topol, Seville 41080, Spain
关键词
D O I
10.1016/S0022-4049(99)00061-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that if a finitely presented group G is the fundamental group of a finite fake surface in which the link of any vertex is not homeomorphic to the 1-skeleton of a tetrahedron, then there is a finite 2-complex K with pi(1)(K) congruent to G and whose universal cover (K) over tilde has the proper homotopy type of a 3-manifold. As a consequence, the cohomology group HL(G; ZG) is free abelian. (C) 2000 Elsevier Science B.V. All rights reserved. MSC: 57M07; 57M10; 57M20.
引用
收藏
页码:163 / 172
页数:10
相关论文
共 50 条
  • [1] 3-MANIFOLDS AS BRANCHED COVERS
    LICKORIS.WB
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1973, 74 (NOV): : 449 - 451
  • [2] On Distinct Finite Covers of 3-manifolds
    Friedl, Stefan
    Park, Junghwan
    Petri, Bram
    Raimbault, Jean
    Ray, Arunima
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (02) : 809 - 846
  • [3] Haken 3-Manifolds in Small Covers
    Wu, Lisu
    Yu, Li
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (04) : 549 - 560
  • [4] Finite covers of random 3-manifolds
    Nathan M. Dunfield
    William P. Thurston
    Inventiones mathematicae, 2006, 166 : 457 - 521
  • [5] Haken 3-Manifolds in Small Covers
    Lisu WU
    Li YU
    Chinese Annals of Mathematics,Series B, 2023, (04) : 549 - 560
  • [6] Finite covers of random 3-manifolds
    Dunfield, Nathan M.
    Thurston, William P.
    INVENTIONES MATHEMATICAE, 2006, 166 (03) : 457 - 521
  • [7] Haken 3-Manifolds in Small Covers
    Lisu Wu
    Li Yu
    Chinese Annals of Mathematics, Series B, 2023, 44 : 549 - 560
  • [8] ON UNIVERSAL GROUPS AND 3-MANIFOLDS
    HILDEN, HM
    LOZANO, MT
    MONTESINOS, JM
    WHITTEN, WC
    INVENTIONES MATHEMATICAE, 1987, 87 (03) : 441 - 456
  • [9] On a universal perturbative invariant of 3-manifolds
    Le, TTQ
    Murakami, J
    Ohtsuki, T
    TOPOLOGY, 1998, 37 (03) : 539 - 574
  • [10] The curve complex and covers via hyperbolic 3-manifolds
    Robert Tang
    Geometriae Dedicata, 2012, 161 : 233 - 237