Liouvillian integrability of the three-dimensional generalized Hénon–Heiles Hamiltonian

被引:0
|
作者
Idriss El Fakkousy
Jaouad Kharbach
Walid Chatar
Mohamed Benkhali
Abdellah Rezzouk
Mohammed Ouazzani-Jamil
机构
[1] Université Sidi Mohamed Ben Abdellah,Laboratoire de Physique du Solide, Faculté des Sciences Dhar El Mahraz
[2] Université Privée de Fès,Laboratoire Systèmes et Environnements Durables
来源
The European Physical Journal Plus | / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we report about three cases of integrability in sense of Liouville for three-dimensional generalized Hénon–Heiles Hamiltonian. This also allow to get explicitly integrals of motions for each case. On the other hand, this paper investigates the phase space structure numerically with Poincaré surfaces of section and 3D projections which allow to verify that the analytical results are in agreement with the computations.
引用
收藏
相关论文
共 50 条
  • [41] Perturbed ion traps:: A generalization of the three-dimensional Henon-Heiles problem
    Lanchares, V
    Pascual, AI
    Palacián, J
    Yanguas, P
    Salas, JP
    CHAOS, 2002, 12 (01) : 87 - 99
  • [42] Constructing Solutions for the Generalized Hénon–Heiles System Through the Painlevé Test
    S. Yu. Vernov
    Theoretical and Mathematical Physics, 2003, 135 : 792 - 801
  • [43] THREE-DIMENSIONAL GENERALIZED LOGARITHMIC SPIRALS
    Roa, Javier
    Pelaez, Jesus
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 319 - 338
  • [44] A new three-dimensional conservative system with non - Hamiltonian energy and its synchronization application
    Yan, Shaohui
    Zheng, Bian
    Wang, Jianjian
    Cui, Yu
    Li, Lin
    Jiang, Jiawei
    INTEGRATION-THE VLSI JOURNAL, 2024, 94
  • [45] Application of a new Hamiltonian of interaction to three-dimensional structures
    Dolocan, A
    Doloncan, VO
    Dolocan, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (09): : 1351 - 1368
  • [46] Hamiltonian thermodynamics of three-dimensional dilatonic black holes
    Dias, Goncalo A. S.
    Lemos, Jose P. S.
    PHYSICAL REVIEW D, 2008, 78 (04):
  • [47] The Hamiltonian formulation of tetrad gravity: Three-dimensional case
    Frolov, A. M.
    Kiriushcheva, N.
    Kuzmin, S. V.
    GRAVITATION & COSMOLOGY, 2010, 16 (03): : 181 - 194
  • [48] The Hamiltonian formulation of tetrad gravity: Three-dimensional case
    A. M. Frolov
    N. Kiriushcheva
    S. V. Kuzmin
    Gravitation and Cosmology, 2010, 16 : 181 - 194
  • [49] Symmetry group classification of three-dimensional Hamiltonian systems
    Damianou, PA
    Sophocleous, C
    APPLIED MATHEMATICS LETTERS, 2000, 13 (02) : 63 - 70
  • [50] Generalization of Hamiltonian mechanics to a three-dimensional phase space
    Sato, Naoki
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (06):