Liouvillian integrability of the three-dimensional generalized Hénon–Heiles Hamiltonian

被引:0
|
作者
Idriss El Fakkousy
Jaouad Kharbach
Walid Chatar
Mohamed Benkhali
Abdellah Rezzouk
Mohammed Ouazzani-Jamil
机构
[1] Université Sidi Mohamed Ben Abdellah,Laboratoire de Physique du Solide, Faculté des Sciences Dhar El Mahraz
[2] Université Privée de Fès,Laboratoire Systèmes et Environnements Durables
来源
The European Physical Journal Plus | / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we report about three cases of integrability in sense of Liouville for three-dimensional generalized Hénon–Heiles Hamiltonian. This also allow to get explicitly integrals of motions for each case. On the other hand, this paper investigates the phase space structure numerically with Poincaré surfaces of section and 3D projections which allow to verify that the analytical results are in agreement with the computations.
引用
收藏
相关论文
共 50 条
  • [21] Non-Hermitian Dirac Hamiltonian in Three-Dimensional Gravity and Pseudosupersymmetry
    Yesiltas, Ozlem
    ADVANCES IN HIGH ENERGY PHYSICS, 2015, 2015
  • [22] NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM
    Shi, Shaoyun
    Li, Wenlei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1645 - 1655
  • [23] LINEAR RECURSION FORMULAS OF GENERALIZED FOCUS QUANTITIES AND LOCAL INTEGRABILITY FOR A CLASS OF THREE-DIMENSIONAL SYSTEMS
    Wang, Qinlong
    Li, Wenyu
    Huang, Wentao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (03): : 1186 - 1194
  • [24] Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps
    S. V. Gonchenko
    V. S. Gonchenko
    J. C. Tatjer
    Regular and Chaotic Dynamics, 2007, 12 : 233 - 266
  • [25] On two nonintegrable cases of the generalized Hénon-Heiles system
    S. Yu. Vernov
    E. I. Timoshkova
    Physics of Atomic Nuclei, 2005, 68 : 1947 - 1955
  • [26] Cases of Integrability of Three-Dimensional Dynamic Equations for a Solid
    M. V. Shamolin
    International Applied Mechanics, 2001, 37 : 769 - 777
  • [27] INTEGRABILITY AND BIFURCATIONS OF A THREE-DIMENSIONAL CIRCUIT DIFFERENTIAL SYSTEM
    Fercec, Brigita
    Romanovski, Valery G.
    Tang, Yilei
    Zhang, Ling
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08): : 4573 - 4588
  • [28] Local integrability of a family of three-dimensional quadratic systems
    Hu, Zhaoping
    Han, Maoan
    Romanovski, Valery G.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 265 : 78 - 86
  • [29] Integrability and linearizability of a family of three-dimensional quadratic systems
    Aziz, Waleed
    Amen, Azad
    Pantazi, Chara
    Dynamical Systems, 2021, 36 (02): : 317 - 331
  • [30] INTEGRABILITY AND LINEARIZABILITY OF SYMMETRIC THREE-DIMENSIONAL QUADRATIC SYSTEMS
    Arcet, Barbara
    Romanovski, Valery G.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (3-4): : 361 - 378