Conformal CMC-Surfaces in Lorentzian Space Forms*

被引:2
|
作者
Changxiong Nie
Xiang Ma
Changping Wang
机构
[1] School of Mathematical Sciences,Lab of Mathematics and Applied Mathematics
[2] Peking University,undefined
来源
Chinese Annals of Mathematics, Series B | 2007年 / 28卷
关键词
Conformal geometry; Willmore surfaces; Lorentzian space; 53A30; 53B30;
D O I
暂无
中图分类号
学科分类号
摘要
Let ℚ3 be the common conformal compactification space of the Lorentzian space forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $$\end{document}. We study the conformal geometry of space-like surfaces in ℚ3. It is shown that any conformal CMC-surface in ℚ3 must be conformally equivalent to a constant mean curvature surface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $$\end{document}. We also show that if x : M → ℚ3 is a space-like Willmore surface whose conformal metric g has constant curvature K, then either K = −1 and x is conformally equivalent to a minimal surface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}^{3}_{1} $$\end{document}, or K = 0 and x is conformally equivalent to the surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{H}^{1} {\left( {\frac{1} {{{\sqrt 2 }}}} \right)} \times \mathbb{H}^{1} {\left( {\frac{1} {{{\sqrt 2 }}}} \right)}\;{\text{in}}\;\mathbb{H}^{3}_{1} . $$\end{document}
引用
收藏
页码:299 / 310
页数:11
相关论文
共 50 条
  • [41] Polar transform of spacelike isothermic surfaces in 4-dimensional Lorentzian space forms
    Ma, Xiang
    Wang, Peng
    RESULTS IN MATHEMATICS, 2008, 52 (3-4) : 347 - 358
  • [42] Complete CMC spacelike hypersurfaces immersed in a Lorentzian product space
    Aquino, Cicero P.
    de Lima, Henrique F.
    Lima, Eraldo A., Jr.
    ARCHIV DER MATHEMATIK, 2015, 104 (06) : 577 - 587
  • [43] CLASSIFICATION OF MARGINALLY TRAPPED SURFACES WITH PARALLEL MEAN CURVATURE VECTOR IN LORENTZIAN SPACE FORMS
    Chen, Bang-Yen
    Van der Veken, Joeri
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 421 - 449
  • [44] Maximal surfaces in Lorentzian Heisenberg space
    Lee, Hojoo
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 73 - 84
  • [45] Examples and structure of CMC surfaces in some Riemannian and Lorentzian homogeneous spaces
    Cavalcante, Marcos P.
    De Lira, Jorge H. S.
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (01) : 163 - 181
  • [46] NAVIGATING THE SPACE OF SYMMETRIC CMC SURFACES
    Heller, Lynn
    Heller, Sebastian
    Schmitt, Nicholas
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 110 (03) : 413 - 455
  • [47] Curvature properties of zero mean curvature surfaces in four-dimensional Lorentzian space forms
    Alias, LJ
    Palmer, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 315 - 327
  • [48] Fuchsian polyhedra in Lorentzian space-forms
    François Fillastre
    Mathematische Annalen, 2011, 350 : 417 - 453
  • [49] Hypersurface Constrained Elasticae in Lorentzian Space Forms
    Garay, Oscar J.
    Pampano, Alvaro
    Woo, Changhwa
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [50] METALLIC SHAPED HYPERSURFACES IN LORENTZIAN SPACE FORMS
    Ozgur, Cihan
    Ozgur, Nihal Yilmaz
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2017, 58 (02): : 215 - 226