Conformal CMC-Surfaces in Lorentzian Space Forms*

被引:2
|
作者
Changxiong Nie
Xiang Ma
Changping Wang
机构
[1] School of Mathematical Sciences,Lab of Mathematics and Applied Mathematics
[2] Peking University,undefined
来源
Chinese Annals of Mathematics, Series B | 2007年 / 28卷
关键词
Conformal geometry; Willmore surfaces; Lorentzian space; 53A30; 53B30;
D O I
暂无
中图分类号
学科分类号
摘要
Let ℚ3 be the common conformal compactification space of the Lorentzian space forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $$\end{document}. We study the conformal geometry of space-like surfaces in ℚ3. It is shown that any conformal CMC-surface in ℚ3 must be conformally equivalent to a constant mean curvature surface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}^{3}_{1} ,\mathbb{S}^{3}_{1} \;{\text{and}}\;\mathbb{H}^{3}_{1} $$\end{document}. We also show that if x : M → ℚ3 is a space-like Willmore surface whose conformal metric g has constant curvature K, then either K = −1 and x is conformally equivalent to a minimal surface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}^{3}_{1} $$\end{document}, or K = 0 and x is conformally equivalent to the surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{H}^{1} {\left( {\frac{1} {{{\sqrt 2 }}}} \right)} \times \mathbb{H}^{1} {\left( {\frac{1} {{{\sqrt 2 }}}} \right)}\;{\text{in}}\;\mathbb{H}^{3}_{1} . $$\end{document}
引用
收藏
页码:299 / 310
页数:11
相关论文
共 50 条
  • [31] Pseudo-parallel Lorentzian Surfaces in Pseudo-Riemannian Space Forms
    Guillermo Lobos
    Mynor Melara
    Oscar Palmas
    Results in Mathematics, 2023, 78
  • [32] Pseudo-parallel Lorentzian Surfaces in Pseudo-Riemannian Space Forms
    Lobos, Guillermo
    Melara, Mynor
    Palmas, Oscar
    RESULTS IN MATHEMATICS, 2023, 78 (02)
  • [33] Biharmonic and Quasi-Biharmonic Slant Surfaces in Lorentzian Complex Space Forms
    Fu, Yu
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] OPTIMAL LENGTH ESTIMATES FOR STABLE CMC SURFACES IN 3-SPACE FORMS
    Mazet, Laurent
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (08) : 2761 - 2765
  • [35] Semi-symmetric Lorentzian hypersurfaces in Lorentzian space forms
    Al-shehri, Norah
    Guediri, Mohammed
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 71 : 85 - 102
  • [36] ON THE CLASSIFICATION OF LORENTZIAN SASAKI SPACE FORMS
    Brunetti, Letizia
    Pastore, Anna Maria
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2013, 94 (108): : 163 - 168
  • [37] Null helices in Lorentzian space forms
    Ferrández, A
    Giménez, A
    Lucas, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (30): : 4845 - 4863
  • [38] Complete CMC spacelike hypersurfaces immersed in a Lorentzian product space
    Cícero P. Aquino
    Henrique F. de Lima
    Eraldo A. Lima
    Archiv der Mathematik, 2015, 104 : 577 - 587
  • [39] ISOMETRIC IMMERSIONS OF LORENTZIAN SPACE FORMS
    GRAVES, L
    NOMIZU, K
    MATHEMATISCHE ANNALEN, 1978, 233 (02) : 125 - 136
  • [40] Polar Transform of Spacelike Isothermic Surfaces in 4-Dimensional Lorentzian Space Forms
    Xiang Ma
    Peng Wang
    Results in Mathematics, 2008, 52 : 347 - 358