Modeling the dynamics of the consequences of demographic disparities in the transmission of Lassa fever disease in Nigeria

被引:0
|
作者
Oluwatayo Michael Ogunmiloro
机构
[1] Ekiti State University,Department of Mathematics, Faculty of Science
关键词
Lassa fever; Stability analysis; Basic reproduction number ; Sensitivity analysis; 92B05; 92B20;
D O I
暂无
中图分类号
学科分类号
摘要
Lassa fever is a zoonotic debilitating disease with huge human and economic loss in the tropics. This work presents a mathematical model describing the transmission of Lassa fever disease in communities with social demographic disparities among the affluent and impoverished humans in the presence of contact tracing, quarantining and hospitalization. The model qualitative results involving the positivity and invariant region of the model are established, while the model’s Lassa fever disease free (LDFE) and Lassa fever endemic equilibrium (LEE) were obtained to show that the LDFE is locally and globally asymptotically stable, whenever the basic reproduction number (Rlassa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{\mathrm{lassa}})$$\end{document} of the model is less than one, and the LEE is locally asymptotically stable whenever Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} is greater than one. The graphical illustrations describing the convergence behavior of the model variables when Rlassa<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}<1$$\end{document} and Rlassa>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}>1$$\end{document} are displayed. In order to describe the dynamics of the disease in Nigeria, data on Lassa fever disease incidence cases for the year 2021 in Nigeria, provided by Nigerian Center for Disease Control is used for the model fitting to obtain the best fit with low residuals. The estimated and fitted parameters of the model were used to perform the sensitivity analysis of model parameters with respect to Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} and it was found that the positive sensitive values of the recruitment rates of humans and rodents, disease contact rates ψ,βv,βw,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi , \beta _v,\beta _w,$$\end{document} and βz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _z$$\end{document} drives the Lassa fever infection to prevalence. The simulations of the disease contact rates βv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _v$$\end{document} and βw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _w$$\end{document} with respect to Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} in the human host community, shows that Rlassa>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{lassa}>1$$\end{document}, that is, more humans are infected in the impoverished community compared to affluent community, while Rlassa≈140.009,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}\approx 140.009,$$\end{document} shows that approximately 140 humans are being infected weekly on the average in the impoverished human community. These effects calls for strict implementation of controls of sensitization, culling, sanitation etc., to eradicate Lassa fever in Nigeria.
引用
收藏
页码:865 / 880
页数:15
相关论文
共 50 条
  • [41] The chikungunya disease: Modeling, vector and transmission global dynamics
    Moulay, D.
    Aziz-Alaoui, M. A.
    Cadivel, M.
    MATHEMATICAL BIOSCIENCES, 2011, 229 (01) : 50 - 63
  • [42] Modeling the transmission dynamics of Ebola virus disease in Liberia
    Zhi-Qiang Xia
    Shi-Fu Wang
    Shen-Long Li
    Liu-Yu Huang
    Wen-Yi Zhang
    Gui-Quan Sun
    Zhong-Tao Gai
    Zhen Jin
    Scientific Reports, 5
  • [43] MODELING THE DYNAMICS AND TRANSMISSION OF CASSAVA MOSAIC DISEASE IN TANZANIA
    Magoyo, Florence
    Irunde, Jacob Ismail
    Kuznetsov, Dmitry
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2019,
  • [44] Modeling the transmission dynamics of Ebola virus disease in Liberia
    Xia, Zhi-Qiang
    Wang, Shi-Fu
    Li, Shen-Long
    Huang, Liu-Yu
    Zhang, Wen-Yi
    Sun, Gui-Quan
    Gai, Zhong-Tao
    Jin, Zhen
    SCIENTIFIC REPORTS, 2015, 5
  • [45] Mathematical modeling on co-infection: transmission dynamics of Zika virus and Dengue fever
    Jose, Sayooj Aby
    Raja, R.
    Omede, B., I
    Agarwal, Ravi P.
    Alzabut, J.
    Cao, J.
    Balas, V. E.
    NONLINEAR DYNAMICS, 2023, 111 (05) : 4879 - 4914
  • [46] Mathematical modeling on co-infection: transmission dynamics of Zika virus and Dengue fever
    Sayooj Aby Jose
    R. Raja
    B. I. Omede
    Ravi P. Agarwal
    J. Alzabut
    J. Cao
    V. E. Balas
    Nonlinear Dynamics, 2023, 111 : 4879 - 4914
  • [47] Modeling the transmission dynamics of powdery mildew disease in cashew plants
    Mrope, Fadhili Mustafa
    Nyerere, Nkuba
    Mgandu, Filimon Abel
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (03)
  • [48] Modeling and Transmission Dynamics of Leprosy Disease: Via Numerical Methods
    Ali Raza
    Muhammad Rafiq
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 279 - 290
  • [49] Modeling and Transmission Dynamics of Leprosy Disease: Via Numerical Methods
    Raza, Ali
    Rafiq, Muhammad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (01): : 279 - 290
  • [50] Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014
    Fasina, F. O.
    Shittu, A.
    Lazarus, D.
    Tomori, O.
    Simonsen, L.
    Viboud, C.
    Chowell, G.
    EUROSURVEILLANCE, 2014, 19 (40) : 11 - 17