Modeling the dynamics of the consequences of demographic disparities in the transmission of Lassa fever disease in Nigeria

被引:0
|
作者
Oluwatayo Michael Ogunmiloro
机构
[1] Ekiti State University,Department of Mathematics, Faculty of Science
关键词
Lassa fever; Stability analysis; Basic reproduction number ; Sensitivity analysis; 92B05; 92B20;
D O I
暂无
中图分类号
学科分类号
摘要
Lassa fever is a zoonotic debilitating disease with huge human and economic loss in the tropics. This work presents a mathematical model describing the transmission of Lassa fever disease in communities with social demographic disparities among the affluent and impoverished humans in the presence of contact tracing, quarantining and hospitalization. The model qualitative results involving the positivity and invariant region of the model are established, while the model’s Lassa fever disease free (LDFE) and Lassa fever endemic equilibrium (LEE) were obtained to show that the LDFE is locally and globally asymptotically stable, whenever the basic reproduction number (Rlassa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{\mathrm{lassa}})$$\end{document} of the model is less than one, and the LEE is locally asymptotically stable whenever Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} is greater than one. The graphical illustrations describing the convergence behavior of the model variables when Rlassa<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}<1$$\end{document} and Rlassa>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}>1$$\end{document} are displayed. In order to describe the dynamics of the disease in Nigeria, data on Lassa fever disease incidence cases for the year 2021 in Nigeria, provided by Nigerian Center for Disease Control is used for the model fitting to obtain the best fit with low residuals. The estimated and fitted parameters of the model were used to perform the sensitivity analysis of model parameters with respect to Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} and it was found that the positive sensitive values of the recruitment rates of humans and rodents, disease contact rates ψ,βv,βw,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi , \beta _v,\beta _w,$$\end{document} and βz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _z$$\end{document} drives the Lassa fever infection to prevalence. The simulations of the disease contact rates βv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _v$$\end{document} and βw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _w$$\end{document} with respect to Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} in the human host community, shows that Rlassa>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{lassa}>1$$\end{document}, that is, more humans are infected in the impoverished community compared to affluent community, while Rlassa≈140.009,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}\approx 140.009,$$\end{document} shows that approximately 140 humans are being infected weekly on the average in the impoverished human community. These effects calls for strict implementation of controls of sensitization, culling, sanitation etc., to eradicate Lassa fever in Nigeria.
引用
收藏
页码:865 / 880
页数:15
相关论文
共 50 条
  • [31] Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence
    de Castro Medeiros, Liliam Cesar
    Rodrigues Castilho, Cesar Augusto
    Braga, Cynthia
    de Souza, Wayner Vieira
    Regis, Leda
    Vieira Monteiro, Antonio Miguel
    PLOS NEGLECTED TROPICAL DISEASES, 2011, 5 (01):
  • [32] Modeling the dynamics of rubella disease with vertical transmission
    Tilahun, Getachew Teshome
    Tolasa, Tariku Merga
    Wole, Getinet Alemayehu
    HELIYON, 2022, 8 (11)
  • [33] Modeling transmission dynamics of Ebola virus disease
    Imran, Mudassar
    Khan, Adnan
    Ansari, Ali R.
    Shah, Syed Touqeer Hussain
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (04)
  • [34] Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics
    Abboubakar, Hamadjam
    Racke, Reinhard
    CHAOS SOLITONS & FRACTALS, 2021, 149
  • [35] Numerical Modeling of Toxoplasmosis Disease Transmission Dynamics
    Rafiq, M.
    Arif, M. S.
    Raza, A.
    Khatoon, Zainab
    PROCEEDINGS OF 2018 15TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2018, : 188 - 193
  • [36] Mathematical Modeling of the Transmission Dynamics of Gumboro Disease
    Musaili, J. S.
    Chepkwony, I.
    Mutuku, W. N.
    JOURNAL OF APPLIED MATHEMATICS, 2024, 2024
  • [37] The dynamical consequences of seasonal forcing, immune boosting and demographic change in a model of disease transmission
    Dafilis, Mathew P.
    Frascoli, Federico
    McVernon, Jodie
    Heffernan, Jane M.
    McCaw, James M.
    JOURNAL OF THEORETICAL BIOLOGY, 2014, 361 : 124 - 132
  • [38] Ebola virus disease outbreak in Nigeria: Transmission dynamics and rapid control
    Althaus, C. L.
    Low, N.
    Musa, E. O.
    Shuaib, F.
    Gsteiger, S.
    EPIDEMICS, 2015, 11 : 80 - 84
  • [39] Disparities in knowledge, attitude, and practices of infection prevention and control of Lassa fever among health care workers at The Federal Medical Centre, Owo, Ondo State, Nigeria
    Ukwenya, Victor Okoliko
    Fuwape, Temiloluwa Adeola
    Fadahunsi, Tokunbo Ibukun
    Ilesanmi, Olayinka Stephen
    PAN AFRICAN MEDICAL JOURNAL, 2021, 38
  • [40] Mathematical Modeling and Transmission Dynamics Analysis of the African Swine Fever Virus in Benin
    Ayihou, Sena Yannick
    Doumate, Tele Jonas
    Nkwayep, Cedric Hameni
    Tsakou, Samuel Bowong
    Kakai, Romain Glele
    MATHEMATICS, 2024, 12 (11)