Modeling the dynamics of the consequences of demographic disparities in the transmission of Lassa fever disease in Nigeria

被引:0
|
作者
Oluwatayo Michael Ogunmiloro
机构
[1] Ekiti State University,Department of Mathematics, Faculty of Science
关键词
Lassa fever; Stability analysis; Basic reproduction number ; Sensitivity analysis; 92B05; 92B20;
D O I
暂无
中图分类号
学科分类号
摘要
Lassa fever is a zoonotic debilitating disease with huge human and economic loss in the tropics. This work presents a mathematical model describing the transmission of Lassa fever disease in communities with social demographic disparities among the affluent and impoverished humans in the presence of contact tracing, quarantining and hospitalization. The model qualitative results involving the positivity and invariant region of the model are established, while the model’s Lassa fever disease free (LDFE) and Lassa fever endemic equilibrium (LEE) were obtained to show that the LDFE is locally and globally asymptotically stable, whenever the basic reproduction number (Rlassa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{\mathrm{lassa}})$$\end{document} of the model is less than one, and the LEE is locally asymptotically stable whenever Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} is greater than one. The graphical illustrations describing the convergence behavior of the model variables when Rlassa<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}<1$$\end{document} and Rlassa>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}>1$$\end{document} are displayed. In order to describe the dynamics of the disease in Nigeria, data on Lassa fever disease incidence cases for the year 2021 in Nigeria, provided by Nigerian Center for Disease Control is used for the model fitting to obtain the best fit with low residuals. The estimated and fitted parameters of the model were used to perform the sensitivity analysis of model parameters with respect to Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} and it was found that the positive sensitive values of the recruitment rates of humans and rodents, disease contact rates ψ,βv,βw,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi , \beta _v,\beta _w,$$\end{document} and βz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _z$$\end{document} drives the Lassa fever infection to prevalence. The simulations of the disease contact rates βv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _v$$\end{document} and βw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _w$$\end{document} with respect to Rlassa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}$$\end{document} in the human host community, shows that Rlassa>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{lassa}>1$$\end{document}, that is, more humans are infected in the impoverished community compared to affluent community, while Rlassa≈140.009,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm{lassa}}\approx 140.009,$$\end{document} shows that approximately 140 humans are being infected weekly on the average in the impoverished human community. These effects calls for strict implementation of controls of sensitization, culling, sanitation etc., to eradicate Lassa fever in Nigeria.
引用
收藏
页码:865 / 880
页数:15
相关论文
共 50 条
  • [1] Modeling the dynamics of the consequences of demographic disparities in the transmission of Lassa fever disease in Nigeria
    Ogunmiloro, Oluwatayo Michael
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (01) : 865 - 880
  • [2] Modeling the dynamics of Lassa fever in Nigeria
    Mayowa M. Ojo
    B. Gbadamosi
    Temitope O. Benson
    O. Adebimpe
    A. L. Georgina
    Journal of the Egyptian Mathematical Society, 29 (1)
  • [3] Modeling, analyzing and simulating the dynamics of Lassa fever in Nigeria
    Mayowa M. Ojo
    Emile Franc Doungmo Goufo
    Journal of the Egyptian Mathematical Society, 30 (1)
  • [4] Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria
    Akhmetzhanov, Andrei R.
    Asai, Yusuke
    Nishiura, Hiroshi
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1775)
  • [5] Lassa fever: Time to eradicate the deadly disease in Nigeria
    Ohanu, M. E.
    Nwafia, I. N.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2019, 22 (01) : 144 - 145
  • [6] Modelling seasonality of Lassa fever incidences and vector dynamics in Nigeria
    McKendrick, James Q.
    Tennant, Warren S. D.
    Tildesley, Michael J.
    PLOS NEGLECTED TROPICAL DISEASES, 2023, 17 (11):
  • [7] Unravelling the dynamics of Lassa fever transmission with differential infectivity: Modeling analysis and control strategies
    Musa, Salihu S.
    Yusuf, Abdullahi
    Bakare, Emmanuel A.
    Abdullahi, Zainab U.
    Adamu, Lukman
    Mustapha, Umar T.
    He, Daihai
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 13114 - 13136
  • [8] Mathematical Modelling and Analysis of Transmission Dynamics of Lassa Fever
    Bakare, E. A.
    Are, E. B.
    Abolarin, O. E.
    Osanyinlusi, S. A.
    Ngwu, Benitho
    Ubaka, Obiaderi N.
    JOURNAL OF APPLIED MATHEMATICS, 2020, 2020
  • [9] A design of predictive computational network for transmission model of Lassa fever in Nigeria
    Shoaib, Muhammad
    Tabassum, Rafia
    Raja, Muhammad Asif Zahoor
    Nisar, Kottakkaran Sooppy
    Alqahtani, Mohammed S.
    Abbas, Mohamed
    RESULTS IN PHYSICS, 2022, 39
  • [10] Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria
    David W. Redding
    Rory Gibb
    Chioma C. Dan-Nwafor
    Elsie A. Ilori
    Rimamdeyati Usman Yashe
    Saliu H. Oladele
    Michael O. Amedu
    Akanimo Iniobong
    Lauren A. Attfield
    Christl A. Donnelly
    Ibrahim Abubakar
    Kate E. Jones
    Chikwe Ihekweazu
    Nature Communications, 12