Cosmic No-Hair in Spherically Symmetric Black Hole Spacetimes

被引:0
|
作者
João L. Costa
José Natário
Pedro Oliveira
机构
[1] Lisbon University Institute – ISCTE,Mathematics Department
[2] Instituto Superior Técnico ULisboa,Mathematics Department
[3] Instituto Superior Técnico ULisboa,CAMGSD
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze in detail the geometry and dynamics of the cosmological region arising in spherically symmetric black hole solutions of the Einstein–Maxwell-scalar field system with a positive cosmological constant. More precisely, we solve, for such a system, a characteristic initial value problem with data emulating a dynamic cosmological horizon. Our assumptions are fairly weak, in that we only assume that the data approach that of a subextremal Reissner–Nordström-de Sitter black hole, without imposing any rate of decay. We then show that the radius (of symmetry) blows up along any null ray parallel to the cosmological horizon (“near” i+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i^+$$\end{document}), in such a way that r=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=+\infty $$\end{document} is, in an appropriate sense, a spacelike hypersurface. We also prove a version of the cosmic no-hair conjecture by showing that in the past of any causal curve reaching infinity both the metric and the Riemann curvature tensor asymptote to those of a de Sitter spacetime. Finally, we discuss conditions under which all the previous results can be globalized.
引用
收藏
页码:3059 / 3090
页数:31
相关论文
共 50 条
  • [41] No-hair theorems and black holes with hair
    Heusler, M
    HELVETICA PHYSICA ACTA, 1996, 69 (04): : 501 - 528
  • [42] No-Hair Theorems and Black Holes with Hair
    Helv Phys Acta, 4 (501):
  • [43] Relative time delay in a spinning black hole as a diagnostic for no-hair theorem
    Ramil N. Izmailov
    Eduard R. Zhdanov
    Arunava Bhadra
    Kamal K. Nandi
    The European Physical Journal C, 2019, 79
  • [44] Relative time delay in a spinning black hole as a diagnostic for no-hair theorem
    Izmailov, Ramil N.
    Zhdanov, Eduard R.
    Bhadra, Arunava
    Nandi, Kamal K.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (02):
  • [45] Tests of no-hair theorem with two binary black-hole coalescences
    Li, Song
    Han, Wen-Biao
    Yang, Shu-Cheng
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (06):
  • [46] Testing the black hole no-hair theorem with Galactic Center stellar orbits
    Qi, Hong
    O'Shaughnessy, Richard
    Brady, Patrick
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [47] Accurate analytical modeling of light rays in spherically symmetric spacetimes: Applications in the study of black hole accretion disks and polarimetry
    Claros, Jonathan
    Gallo, Emanuel
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [48] On spacetimes dual to spherically symmetric solutions
    Dadhich, N
    Patel, LK
    PRAMANA-JOURNAL OF PHYSICS, 1999, 52 (04): : 359 - 367
  • [49] Spherically symmetric spacetimes in massive gravity
    Damour, T
    Kogan, II
    Papazoglou, A
    PHYSICAL REVIEW D, 2003, 67 (06):
  • [50] Bayesian model selection for testing the no-hair theorem with black hole ringdowns
    Gossan, S.
    Veitch, J.
    Sathyaprakash, B. S.
    PHYSICAL REVIEW D, 2012, 85 (12):