Cosmic No-Hair in Spherically Symmetric Black Hole Spacetimes

被引:0
|
作者
João L. Costa
José Natário
Pedro Oliveira
机构
[1] Lisbon University Institute – ISCTE,Mathematics Department
[2] Instituto Superior Técnico ULisboa,Mathematics Department
[3] Instituto Superior Técnico ULisboa,CAMGSD
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze in detail the geometry and dynamics of the cosmological region arising in spherically symmetric black hole solutions of the Einstein–Maxwell-scalar field system with a positive cosmological constant. More precisely, we solve, for such a system, a characteristic initial value problem with data emulating a dynamic cosmological horizon. Our assumptions are fairly weak, in that we only assume that the data approach that of a subextremal Reissner–Nordström-de Sitter black hole, without imposing any rate of decay. We then show that the radius (of symmetry) blows up along any null ray parallel to the cosmological horizon (“near” i+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i^+$$\end{document}), in such a way that r=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=+\infty $$\end{document} is, in an appropriate sense, a spacelike hypersurface. We also prove a version of the cosmic no-hair conjecture by showing that in the past of any causal curve reaching infinity both the metric and the Riemann curvature tensor asymptote to those of a de Sitter spacetime. Finally, we discuss conditions under which all the previous results can be globalized.
引用
收藏
页码:3059 / 3090
页数:31
相关论文
共 50 条
  • [31] Testing the no-hair theorem with black hole ringdowns using TIGER
    Meidam, J.
    Agathos, M.
    Van Den Broeck, C.
    Veitch, J.
    Sathyaprakash, B. S.
    PHYSICAL REVIEW D, 2014, 90 (06):
  • [32] Black-hole no-hair theorems for a positive cosmological constant
    Bhattacharya, Sourav
    Lahiri, Amitabha
    PHYSICAL REVIEW LETTERS, 2007, 99 (20)
  • [33] COSMIC NO-HAIR THEOREMS AND INFLATION
    BARROW, JD
    PHYSICS LETTERS B, 1987, 187 (1-2) : 12 - 16
  • [34] GENERALIZED COSMIC NO-HAIR THEOREMS
    COTSAKIS, S
    FLESSAS, G
    PHYSICS LETTERS B, 1993, 319 (1-3) : 69 - 73
  • [35] Spherically Symmetric Scalar Hair for Charged Black Holes
    Hong J.-P.
    Suzuki M.
    Yamada M.
    Physical Review Letters, 2020, 125 (11):
  • [36] Observational appearance of the spherically symmetric black hole in PFDM
    Yang, Xuetao
    PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [37] Influence of a plasma on the shadow of a spherically symmetric black hole
    Perlick, Volker
    Tsupko, Oleg Yu.
    Bisnovatyi-Kogan, Gennady S.
    PHYSICAL REVIEW D, 2015, 92 (10):
  • [38] Trajectory around a spherically symmetric nonrotating black hole
    Chakraborty, Sumanta
    Chakraborty, Subenoy
    CANADIAN JOURNAL OF PHYSICS, 2011, 89 (06) : 689 - 695
  • [39] Corrected Entropy of a General Spherically Symmetric Black Hole
    Tang-mei He
    Jin-bo Yang
    Feng-jie Wu
    International Journal of Theoretical Physics, 2012, 51 : 2220 - 2226
  • [40] Corrected Entropy of a General Spherically Symmetric Black Hole
    He, Tang-mei
    Yang, Jin-bo
    Wu, Feng-jie
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (07) : 2220 - 2226