Cosmic No-Hair in Spherically Symmetric Black Hole Spacetimes

被引:0
|
作者
João L. Costa
José Natário
Pedro Oliveira
机构
[1] Lisbon University Institute – ISCTE,Mathematics Department
[2] Instituto Superior Técnico ULisboa,Mathematics Department
[3] Instituto Superior Técnico ULisboa,CAMGSD
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze in detail the geometry and dynamics of the cosmological region arising in spherically symmetric black hole solutions of the Einstein–Maxwell-scalar field system with a positive cosmological constant. More precisely, we solve, for such a system, a characteristic initial value problem with data emulating a dynamic cosmological horizon. Our assumptions are fairly weak, in that we only assume that the data approach that of a subextremal Reissner–Nordström-de Sitter black hole, without imposing any rate of decay. We then show that the radius (of symmetry) blows up along any null ray parallel to the cosmological horizon (“near” i+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i^+$$\end{document}), in such a way that r=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=+\infty $$\end{document} is, in an appropriate sense, a spacelike hypersurface. We also prove a version of the cosmic no-hair conjecture by showing that in the past of any causal curve reaching infinity both the metric and the Riemann curvature tensor asymptote to those of a de Sitter spacetime. Finally, we discuss conditions under which all the previous results can be globalized.
引用
收藏
页码:3059 / 3090
页数:31
相关论文
共 50 条
  • [1] Cosmic No-Hair in Spherically Symmetric Black Hole Spacetimes
    Costa, Joao L.
    Natario, Jose
    Oliveira, Pedro
    ANNALES HENRI POINCARE, 2019, 20 (09): : 3059 - 3090
  • [2] Optical analogues of spherically symmetric black hole spacetimes
    Hegde, S. S.
    Vishveshwara, C. V.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [3] Spherically symmetric black hole spacetimes on hyperboloidal slices
    Vano-Vinuales, Alex
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [4] Observational signatures of spherically-symmetric black hole spacetimes
    De Laurentis, Mariafelicia
    Younsi, Ziri
    Porth, Oliver
    Mizuno, Yosuke
    Fromm, Christian
    Rezzolla, Luciano
    Olivares, Hector
    3RD KARL SCHWARZSCHILD MEETING - GRAVITY AND THE GAUGE/GRAVITY CORRESPONDENCE, 2018, 942
  • [5] Black hole shadow and acceleration bounds for spherically symmetric spacetimes
    Paithankar, Kajol
    Kolekar, Sanved
    PHYSICAL REVIEW D, 2023, 108 (10)
  • [6] A no-hair theorem for spherically symmetric black holes in R2 gravity
    Sultana, Joseph
    Kazanas, Demosthenes
    GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (11)
  • [7] Black hole no-hair theorem for self-gravitating time-dependent spherically symmetric multiple scalar fields
    Yazadjiev, Stoytcho S.
    Doneva, Daniela D.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (05):
  • [8] Test-particle dynamics in general spherically symmetric black hole spacetimes
    De Laurentis, Mariafelicia
    Younsi, Ziri
    Porth, Oliver
    Mizuno, Yosuke
    Rezzolla, Luciano
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [9] Testing the black hole 'no-hair' hypothesis
    Cardoso, Vitor
    Gualtieri, Leonardo
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (17)
  • [10] The no-hair theorem and black hole shadows
    Tang, Meirong
    Xu, Zhaoyi
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)