Adapting extreme value statistics to financial time series: dealing with bias and serial dependence

被引:0
|
作者
Laurens de Haan
Cécile Mercadier
Chen Zhou
机构
[1] Erasmus University Rotterdam,Institut Camille Jordan
[2] Université Claude Bernard—Lyon 1,undefined
[3] De Nederlandsche Bank,undefined
来源
Finance and Stochastics | 2016年 / 20卷
关键词
Hill estimator; Bias correction; -mixing condition; Tail quantile process; 62G32; 60G70; C14;
D O I
暂无
中图分类号
学科分类号
摘要
We handle two major issues in applying extreme value analysis to financial time series, bias and serial dependence, jointly. This is achieved by studying bias correction methods when observations exhibit weak serial dependence, in the sense that they come from β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}-mixing series. For estimating the extreme value index, we propose an asymptotically unbiased estimator and prove its asymptotic normality under the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}-mixing condition. The bias correction procedure and the dependence structure have a joint impact on the asymptotic variance of the estimator. Then we construct an asymptotically unbiased estimator of high quantiles. We apply the new method to estimate the value-at-risk of the daily return on the Dow Jones Industrial Average index.
引用
收藏
页码:321 / 354
页数:33
相关论文
共 50 条
  • [41] The origins of multifractality in financial time series and the effect of extreme events
    Green, Elena
    Hanan, William
    Heffernan, Daniel
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (06): : 1 - 9
  • [42] Portmanteau test statistics for seasonal serial correlation in time series models
    Mahdi, Esam
    SPRINGERPLUS, 2016, 5
  • [43] Statistics of extreme values in time series with intermediate-term correlations
    Pennetta, Cecilia
    NOISE AND STOCHASTICS IN COMPLEX SYSTEMS AND FINANCE, 2007, 6601
  • [44] Probability Distribution of Waiting Time of the kth Extreme Event under Serial Dependence
    Serinaldi, Francesco
    Lombardo, Federico
    JOURNAL OF HYDROLOGIC ENGINEERING, 2020, 25 (06)
  • [45] Space-time extreme value statistics of a Gaussian random field
    Naess, A.
    Batsevych, O.
    PROBABILISTIC ENGINEERING MECHANICS, 2010, 25 (04) : 372 - 379
  • [46] Modelling the dynamic dependence structure in multivariate financial time series
    Serban, Mihaela
    Brockwell, Anthony
    Lehoczky, John
    Srivastava, Sanjay
    JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (05) : 763 - 782
  • [47] Testing for Long-Range Dependence in Financial Time Series
    Mangat, Manveer Kaur
    Reschenhofer, Erhard
    CENTRAL EUROPEAN JOURNAL OF ECONOMIC MODELLING AND ECONOMETRICS, 2019, 11 (02): : 93 - 106
  • [48] Detecting Structural Differences in Tail Dependence of Financial Time Series
    Bormann, Carsten
    Schienle, Melanie
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (02) : 380 - 392
  • [49] On testing for nonlinear dependence and chaos in financial time series data
    Cecen, A
    Ugur, A
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 203 - 208
  • [50] Copulas, Tail Dependence and Applications to the Analysis of Financial Time Series
    Durante, Fabrizio
    AGGREGATION FUNCTIONS IN THEORY AND IN PRACTISE, 2013, 228 : 17 - 22