Adapting extreme value statistics to financial time series: dealing with bias and serial dependence

被引:0
|
作者
Laurens de Haan
Cécile Mercadier
Chen Zhou
机构
[1] Erasmus University Rotterdam,Institut Camille Jordan
[2] Université Claude Bernard—Lyon 1,undefined
[3] De Nederlandsche Bank,undefined
来源
Finance and Stochastics | 2016年 / 20卷
关键词
Hill estimator; Bias correction; -mixing condition; Tail quantile process; 62G32; 60G70; C14;
D O I
暂无
中图分类号
学科分类号
摘要
We handle two major issues in applying extreme value analysis to financial time series, bias and serial dependence, jointly. This is achieved by studying bias correction methods when observations exhibit weak serial dependence, in the sense that they come from β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}-mixing series. For estimating the extreme value index, we propose an asymptotically unbiased estimator and prove its asymptotic normality under the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}-mixing condition. The bias correction procedure and the dependence structure have a joint impact on the asymptotic variance of the estimator. Then we construct an asymptotically unbiased estimator of high quantiles. We apply the new method to estimate the value-at-risk of the daily return on the Dow Jones Industrial Average index.
引用
收藏
页码:321 / 354
页数:33
相关论文
共 50 条