Total Variation Approximation of Random Orthogonal Matrices by Gaussian Matrices

被引:0
|
作者
Kathryn Stewart
机构
[1] Case Western Reserve University,Department of Mathematics
来源
关键词
Random orthogonal matrix; Central limit theorem; Wishart matrices; Moments; 60F05; 60C05;
D O I
暂无
中图分类号
学科分类号
摘要
The topic of this paper is the asymptotic distribution of the entries of random orthogonal matrices distributed according to Haar measure. We examine the total variation distance between the joint distribution of the entries of Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n$$\end{document}, the pn×qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n \times q_n$$\end{document} upper-left block of a Haar-distributed matrix, and that of pnqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_nq_n$$\end{document} independent standard Gaussian random variables and show that the total variation distance converges to zero when pnqn=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_nq_n = o(n)$$\end{document}.
引用
收藏
页码:1111 / 1143
页数:32
相关论文
共 50 条
  • [41] Gaussian Fluctuations for Random Matrices with Correlated Entries
    Schenker, Jeffrey
    Schulz-Baldes, Hermann
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [42] Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices
    O'Rourke, Sean
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (06) : 1045 - 1066
  • [43] Gaussian ensemble of tridiagonal symmetric random matrices
    Vagov, AV
    Vorov, OK
    PHYSICS LETTERS A, 1997, 232 (1-2) : 91 - 98
  • [44] Random Hermitian matrices and Gaussian multiplicative chaos
    Berestycki, Nathanael
    Webb, Christian
    Wong, Mo Dick
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (1-2) : 103 - 189
  • [45] Spectrum of the product of independent random Gaussian matrices
    Burda, Z.
    Janik, R. A.
    Waclaw, B.
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [46] Random Hermitian matrices and Gaussian multiplicative chaos
    Nathanaël Berestycki
    Christian Webb
    Mo Dick Wong
    Probability Theory and Related Fields, 2018, 172 : 103 - 189
  • [47] RANDOM RIGHT EIGENVALUES OF GAUSSIAN QUATERNIONIC MATRICES
    Benaych-Georges, Florent
    Chapon, Francois
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (02)
  • [48] Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices
    Sean O’Rourke
    Journal of Statistical Physics, 2010, 138 : 1045 - 1066
  • [49] Estimates for moments of random matrices with Gaussian elements
    Khorunzhiy, Oleksiy
    SEMINAIRE DE PROBABILITES XLI, 2008, 1934 : 51 - 92
  • [50] Euclidean Distance Between Haar Orthogonal and Gaussian Matrices
    C. E. González-Guillén
    C. Palazuelos
    I. Villanueva
    Journal of Theoretical Probability, 2018, 31 : 93 - 118