Total Variation Approximation of Random Orthogonal Matrices by Gaussian Matrices

被引:0
|
作者
Kathryn Stewart
机构
[1] Case Western Reserve University,Department of Mathematics
来源
关键词
Random orthogonal matrix; Central limit theorem; Wishart matrices; Moments; 60F05; 60C05;
D O I
暂无
中图分类号
学科分类号
摘要
The topic of this paper is the asymptotic distribution of the entries of random orthogonal matrices distributed according to Haar measure. We examine the total variation distance between the joint distribution of the entries of Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n$$\end{document}, the pn×qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n \times q_n$$\end{document} upper-left block of a Haar-distributed matrix, and that of pnqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_nq_n$$\end{document} independent standard Gaussian random variables and show that the total variation distance converges to zero when pnqn=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_nq_n = o(n)$$\end{document}.
引用
收藏
页码:1111 / 1143
页数:32
相关论文
共 50 条
  • [31] Random Block Matrices and Matrix Orthogonal Polynomials
    Holger Dette
    Bettina Reuther
    Journal of Theoretical Probability, 2010, 23 : 378 - 400
  • [32] Random matrices, nonbacktracking walks, and orthogonal polynomials
    Sodin, Sasha
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)
  • [33] Edge Universality for Orthogonal Ensembles of Random Matrices
    Shcherbina, M.
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (01) : 35 - 50
  • [34] Classical skew orthogonal polynomials and random matrices
    Adler, M
    Forrester, PJ
    Nagao, T
    van Moerbeke, P
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (1-2) : 141 - 170
  • [35] ERGODIC PROPERTY OF ORTHOGONAL ENSEMBLES OF RANDOM MATRICES
    BRODY, TA
    MELLO, PA
    PHYSICS LETTERS A, 1971, A 37 (05) : 429 - &
  • [36] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Cunden, Fabio Deelan
    Mezzadri, Francesco
    O'Connell, Neil
    Simm, Nick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (03) : 1091 - 1145
  • [37] Random Block Matrices and Matrix Orthogonal Polynomials
    Dette, Holger
    Reuther, Bettina
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (02) : 378 - 400
  • [38] Sampling the eigenvalues of random orthogonal and unitary matrices
    Fasi, Massimiliano
    Robol, Leonardo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 620 : 297 - 321
  • [39] Euclidean Distance Between Haar Orthogonal and Gaussian Matrices
    Gonzalez-Guillen, C. E.
    Palazuelos, C.
    Villanueva, I.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 93 - 118
  • [40] Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
    Monajemi, Hatef
    Jafarpour, Sina
    Gavish, Matan
    Donoho, David L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (04) : 1181 - 1186