Total Variation Approximation of Random Orthogonal Matrices by Gaussian Matrices

被引:0
|
作者
Kathryn Stewart
机构
[1] Case Western Reserve University,Department of Mathematics
来源
关键词
Random orthogonal matrix; Central limit theorem; Wishart matrices; Moments; 60F05; 60C05;
D O I
暂无
中图分类号
学科分类号
摘要
The topic of this paper is the asymptotic distribution of the entries of random orthogonal matrices distributed according to Haar measure. We examine the total variation distance between the joint distribution of the entries of Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n$$\end{document}, the pn×qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n \times q_n$$\end{document} upper-left block of a Haar-distributed matrix, and that of pnqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_nq_n$$\end{document} independent standard Gaussian random variables and show that the total variation distance converges to zero when pnqn=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_nq_n = o(n)$$\end{document}.
引用
收藏
页码:1111 / 1143
页数:32
相关论文
共 50 条
  • [1] Total Variation Approximation of Random Orthogonal Matrices by Gaussian Matrices
    Stewart, Kathryn
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (02) : 1111 - 1143
  • [2] Orthogonal polynomials, Jacobi matrices and random matrices
    Pastur, L.
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 249 - 263
  • [3] APPROXIMATION OF PROBABILITY MEASURES IN VARIATION AND PRODUCTS OF RANDOM MATRICES
    TUTUBALIN, VN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (01): : 65 - +
  • [4] GENERATION OF RANDOM ORTHOGONAL MATRICES
    ANDERSON, TW
    OLKIN, I
    UNDERHILL, LG
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (04): : 625 - 629
  • [5] Truncations of random orthogonal matrices
    Khoruzhenko, Boris A.
    Sommers, Hans-Juergen
    Zyczkowski, Karol
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [6] GAUSSIAN FLUCTUATION IN RANDOM MATRICES
    COSTIN, O
    LEBOWITZ, JL
    PHYSICAL REVIEW LETTERS, 1995, 75 (01) : 69 - 72
  • [7] GAUSSIAN ENSEMBLES OF RANDOM HERMITIAN MATRICES INTERMEDIATE BETWEEN ORTHOGONAL AND UNITARY ONES
    PANDEY, A
    MEHTA, ML
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) : 449 - 468
  • [8] Methods for generating random orthogonal matrices
    Genz, A
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 199 - 213
  • [9] Random orthogonal matrices and the Cayley transform
    Jauch, Michael
    Hoff, Peter D.
    Dunson, David B.
    BERNOULLI, 2020, 26 (02) : 1560 - 1586
  • [10] Orthogonal polynomials and fluctuations of random matrices
    Kusalik, Timothy
    Mingo, James A.
    Speicher, Roland
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 604 : 1 - 46