Stochastic optimization on complex variables and pure-state quantum tomography

被引:0
|
作者
A. Utreras-Alarcón
M. Rivera-Tapia
S. Niklitschek
A. Delgado
机构
[1] Universidad de Concepción,Instituto Milenio de Investigación en Óptica
[2] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Física
[3] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Estadística
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Real-valued functions of complex arguments violate the Cauchy-Riemann conditions and, consequently, do not have Taylor series expansion. Therefore, optimization methods based on derivatives cannot be directly applied to this class of functions. This is circumvented by mapping the problem to the field of the real numbers by considering real and imaginary parts of the complex arguments as the new independent variables. We introduce a stochastic optimization method that works within the field of the complex numbers. This has two advantages: Equations on complex arguments are simpler and easy to analyze and the use of the complex structure leads to performance improvements. The method produces a sequence of estimates that converges asymptotically in mean to the optimizer. Each estimate is generated by evaluating the target function at two different randomly chosen points. Thereby, the method allows the optimization of functions with unknown parameters. Furthermore, the method exhibits a large performance enhancement. This is demonstrated by comparing its performance with other algorithms in the case of quantum tomography of pure states. The method provides solutions which can be two orders of magnitude closer to the true minima or achieve similar results as other methods but with three orders of magnitude less resources.
引用
收藏
相关论文
共 50 条
  • [31] Characteristics of a pure-state ambiguity function
    Praxmeyer, Ludmila
    Stenholm, Stig
    Vitanov, Nikolay
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
  • [32] Quantifying imaginarity in terms of pure-state imaginarity
    Du, Shuanping
    Bai, Zhaofang
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [33] Schrodinger's pure-state steering completed
    Herbut, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (08)
  • [34] Quantum state tomography for generic pure states
    ShiLin Huang
    JianXin Chen
    YouNing Li
    Bei Zeng
    Science China(Physics,Mechanics & Astronomy), 2018, Mechanics & Astronomy)2018 (11) : 5 - 11
  • [35] Quantum state tomography for generic pure states
    ShiLin Huang
    JianXin Chen
    YouNing Li
    Bei Zeng
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [36] Pure-state quantum trajectories for general non-Markovian systems do not exist
    Wiseman, Howard M.
    Gambetta, J. M.
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [37] Quantum state tomography for generic pure states
    Huang, ShiLin
    Chen, JianXin
    Li, YouNing
    Zeng, Bei
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (11)
  • [38] Quantifying coherence in terms of the pure-state coherence
    Yu, Deng-hui
    Zhang, Li-qiang
    Yu, Chang-shui
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [39] On bipartite pure-state entanglement structure in terms of disentanglement
    Herbut, Fedor
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
  • [40] Pure-state informationally complete and "really" complete measurements
    Finkelstein, J
    PHYSICAL REVIEW A, 2004, 70 (05): : 052107 - 1