Stochastic optimization on complex variables and pure-state quantum tomography

被引:0
|
作者
A. Utreras-Alarcón
M. Rivera-Tapia
S. Niklitschek
A. Delgado
机构
[1] Universidad de Concepción,Instituto Milenio de Investigación en Óptica
[2] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Física
[3] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Estadística
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Real-valued functions of complex arguments violate the Cauchy-Riemann conditions and, consequently, do not have Taylor series expansion. Therefore, optimization methods based on derivatives cannot be directly applied to this class of functions. This is circumvented by mapping the problem to the field of the real numbers by considering real and imaginary parts of the complex arguments as the new independent variables. We introduce a stochastic optimization method that works within the field of the complex numbers. This has two advantages: Equations on complex arguments are simpler and easy to analyze and the use of the complex structure leads to performance improvements. The method produces a sequence of estimates that converges asymptotically in mean to the optimizer. Each estimate is generated by evaluating the target function at two different randomly chosen points. Thereby, the method allows the optimization of functions with unknown parameters. Furthermore, the method exhibits a large performance enhancement. This is demonstrated by comparing its performance with other algorithms in the case of quantum tomography of pure states. The method provides solutions which can be two orders of magnitude closer to the true minima or achieve similar results as other methods but with three orders of magnitude less resources.
引用
收藏
相关论文
共 50 条
  • [21] Partition a Quantum Pure-state Set into Unambiguously Discriminable Subsets
    Wang, Jianting
    Wang, Jianyu
    Fu, Zhongqian
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (06) : 2001 - 2011
  • [22] A COHERENT SEMICLASSICAL TRANSPORT MODEL FOR PURE-STATE QUANTUM SCATTERING
    Jin, Shi
    Novak, Kyle A.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (01) : 253 - 275
  • [23] Optimal Pure-State Qubit Tomography via Sequential Weak Measurements
    Shojaee, Ezad
    Jackson, Christopher S.
    Riofrio, Carlos A.
    Kalev, Amir
    Deutsch, Ivan H.
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [24] Multipartite pure-state entanglement
    Thapliyal, AV
    PHYSICAL REVIEW A, 1999, 59 (05): : 3336 - 3342
  • [25] Multipartite pure-state entanglement
    Thapliyal, Ashish V.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (05):
  • [26] Exponents of quantum fixed-length pure-state source coding
    Hayashi, M
    PHYSICAL REVIEW A, 2002, 66 (03): : 13
  • [27] Exponents of quantum fixed-length pure-state source coding
    Hayashi, Masahito
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (03): : 323211 - 323213
  • [28] Characterization of multiqubit pure-state entanglement
    Chen, ZQ
    Xu, QH
    PHYSICAL REVIEW A, 2006, 73 (03):
  • [29] Schmidt analysis of pure-state entanglement
    Eberly, J. H.
    LASER PHYSICS, 2006, 16 (06) : 921 - 926
  • [30] Characteristics of a pure-state ambiguity function
    Praxmeyer, Ludmila
    Stenholm, Stig
    Vitanov, Nikolay
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)