Stochastic optimization on complex variables and pure-state quantum tomography

被引:0
|
作者
A. Utreras-Alarcón
M. Rivera-Tapia
S. Niklitschek
A. Delgado
机构
[1] Universidad de Concepción,Instituto Milenio de Investigación en Óptica
[2] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Física
[3] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Estadística
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Real-valued functions of complex arguments violate the Cauchy-Riemann conditions and, consequently, do not have Taylor series expansion. Therefore, optimization methods based on derivatives cannot be directly applied to this class of functions. This is circumvented by mapping the problem to the field of the real numbers by considering real and imaginary parts of the complex arguments as the new independent variables. We introduce a stochastic optimization method that works within the field of the complex numbers. This has two advantages: Equations on complex arguments are simpler and easy to analyze and the use of the complex structure leads to performance improvements. The method produces a sequence of estimates that converges asymptotically in mean to the optimizer. Each estimate is generated by evaluating the target function at two different randomly chosen points. Thereby, the method allows the optimization of functions with unknown parameters. Furthermore, the method exhibits a large performance enhancement. This is demonstrated by comparing its performance with other algorithms in the case of quantum tomography of pure states. The method provides solutions which can be two orders of magnitude closer to the true minima or achieve similar results as other methods but with three orders of magnitude less resources.
引用
收藏
相关论文
共 50 条
  • [1] Stochastic optimization on complex variables and pure-state quantum tomography
    Utreras-Alarcon, A.
    Rivera-Tapia, M.
    Niklitschek, S.
    Delgado, A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Explicit pure-state density operator structure for quantum tomography
    Fan, Hong-yi
    Lv, Cui-hong
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [3] Quantum pure-state identification
    Hayashi, A
    Horibe, M
    Hashimoto, T
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [4] CAPACITY OF PURE-STATE QUANTUM CHANNEL
    HELSTROM, CW
    PROCEEDINGS OF THE IEEE, 1974, 62 (01) : 139 - 140
  • [5] Pure-state tomography with parallel unentangled measurements
    Verdeil, Francois
    Deville, Yannick
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [6] CLASSICAL ANALOG OF PURE-STATE QUANTUM DYNAMICS
    JAFFE, C
    KANFER, S
    BRUMER, P
    PHYSICAL REVIEW LETTERS, 1985, 54 (01) : 8 - 10
  • [7] Average quantum coherence of pure-state decomposition
    Zhao, Ming-Jing
    Ma, Teng
    Pereira, Rajesh
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [8] Entanglement distribution in pure-state quantum networks
    Perseguers, Sebastien
    Cirac, J. Ignacio
    Acin, Antonio
    Lewenstein, Maciej
    Wehr, Jan
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [9] Variational approach to unique determinedness in pure-state tomography
    Zhang, Chao
    Zhu, Xuanran
    Zeng, Bei
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [10] Pure-state tomography with the expectation value of Pauli operators
    Ma, Xian
    Jackson, Tyler
    Zhou, Hui
    Chen, Jianxin
    Lu, Dawei
    Mazurek, Michael D.
    Fisher, Kent A. G.
    Peng, Xinhua
    Kribs, David
    Resch, Kevin J.
    Ji, Zhengfeng
    Zeng, Bei
    Laflamme, Raymond
    PHYSICAL REVIEW A, 2016, 93 (03)